

By Jonathan Simbahan

Copyright ©2018 Razeware LLC.

All rights reserved. No part of this book or corresponding materials (such as text,
images, or source code) may be reproduced or distributed by any means without prior
written permission of the copyright owner.

This book and all corresponding materials (such as source code) are provided on an “as
is” basis, without warranty of any kind, express of implied, including but not limited to
the warranties of merchantability, fitness for a particular purpose, and
noninfringement. In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in action of contract, tort or otherwise,
arising from, out of or in connection with the software or the use of other dealing in the
software.

All trademarks and registered trademarks appearing in this book are the property of
their own respective owners.

About the team

Jonathan Simbahan is the author of this book. Jonathan is a
Philippines-based game programmer with a curious mind on a quest
to make enjoyable games. Outside of game development, he finds
simple joys in his numerous hobbies which are usually food-related.

Eric Van de Kerckhove is the technical editor of this book. Eric is a
Belgian hobbyist game dev and has been so for more than 15 years. He
has made a fair share of games over the years, mostly free ones for fun
and as learning experiences. Eric leads the Unity team at
raywenderlich.com.

Wendy Lincoln is the editor of this book. Wendy is a technical
marketing project manager who likes words, games, and helping
developers create really awesome tutorials. When she’s not working,
you can find her on the beach or geeking out on technology.

Allen Tan is the final pass editor of this book. Allen is a game
designer and developer who finds joy in the quirky and bizarre. He
turned his passion for video games into a career by founding
Monstronauts, an indie game studio from the Philippines. Together,
he and his team set out to show the world their own brand of fun, one
game at a time.

We’d also like to acknowledge the efforts of an additional individual who helped out
with the book:

Maria Gelyn Lopez assisted with the writing portion of this book.
Maria Gelyn works on an Enterprise Integrated System for a
manufacturing company. She enjoys helping people choose and use
IT solutions.

About the artist

Hunter Russell is a pixel artist and animator with experience on games like Duelyst and
Ikenfell. Have a look at her portfolio at https:/www.hrpixelart.com and her Twitter at
https:/twitter.com/ bigjerk, or contact her via email at hunter@hrpixelart.com..

Beat ’Em Up Game Starter Kit

Table of Contents: Overview

BOOK lICENSE ..ttt 10
Book source code and forums..........cceeeeeecreeeenennene 11
BOOK UPAAtES ... 12
INErOAUCTION .. 13
Chapter 1: Getting Started.......cuevveeveveiiececeeee 21
Chapter 2: Working with Tiled Maps...............u........ 47
Chapter 3: Walk This Way ..., 70
Chapter 4: Running, Jumping, and Punching.......... 128
Chapter 5: Bring on the Droids.......cuoveveveuvecnnnenneen. 171
Chapter 6: Brainy Bots......ouvveeeeviiiiceicceeeceeeee 201
Chapter 7: Pompadroid’s Playbill..........ccccoeveeueenn.e. 250
Chapter 8: Power Attacksccoovvvevvvvvevevveeeeneennen, 292
Chapter 9: Heads-up Display and Mobile Ul.......... 340
Chapter 10: Big Bad Boss and Powerups................ 389
Chapter 11: Audio and Final Touches....................... 433
Chapter 12: Running on Mobile Devices................. 476
Appendix: GridSnapper Classes........ccvvevveevveeennens 496
CONCIUSION ...t 500
More Books You Might Enjoy.......cceeeeeeveevecrreneenne. 502

h raywenderlich.com 5

Beat ’Em Up Game Starter Kit

Table of Contents: Extended

BOOK lICENSE ..o, 10
Book source code and forums.........eceveeeeecnveneeennene. 11
BOOK UPAAtES ... 12
INtrOdUCTION ... 13
Who should have this starter Kit?.........coeeeeeeeeeeeeeeeeeeeeee e 15
CRAPLEN OVEIVIEW ...ttt re s s s s s e snessene 17
ACKNOWIEAZEMENTES. ...ttt ens 20
Chapter 1: Getting Started..........oovevvvevveeiieeceeeenee, 21
Creating @ UNity ProjJECT.... ettt ese et e ae 22
UNILY CraSh COUIS ...ttt ettt esbesas s esae e enenns 24
Creating the title SCENE.... e ne 32
BUEONS @Nd SCIIPES .ttt ess e e enee 41
Where to 80 from NEre7...... ettt 45
Chapter 2: Working with Tiled Maps.............uuu...... 47
Working with tiled backgrounds.........ccoveveieiiiciicccccecccceeeeae, 47
Prefab Creation....... et 60
Where to 80 from NEre7...... ettt 69
Chapter 3: Walk This Waycoveeeiveeiieeieeeeneeene 70
WaALKING 1N SEYI@..eeeeeeeeeeeeeeeet et 71
Set Up Your Game ENVIFONMENToevieeieeeececececece e 77
Mecanim iN @ NUESNEIL ..ot ne 85
The Walk animation ...ttt nan 116
CaAMEIa CONLIOIS ..ttt re e seeseeseesessesseebessesesennens 118
Where to 80 fromM eI ...ttt bbb 127
Chapter 4: Running, Jumping, and Punching.......... 128
RUN, SPIILE, MUN! .ot 129
Jumping up and falling dOWN ... 136

h raywenderlich.com 6

Beat ’Em Up Game Starter Kit

A TG ClEANUP ettt e e saesssesbesaesnsessesssons 153
TaKING @ JaD @t itee ettt nan 157
Where 0 80 froOmM NEIEY ...ttt et sae e ens 170
Chapter 5: Bring on the Droids.......cccceveeveevvennennen. 171
RODOL dESIZN 107 ...ttt et sa e e a e sesaenens 172
RODOL @SSEMDBIY .ttt ettt seens 173
LAY ISttt ettt e e e b e e et et e b e be e b e e b e e st esateeseeenteenseenrens 179
Attacking step one: deteCtioN ... 183
Attacking step tWO: AYING c..oceeeeeeeieeeeceeetecreece ettt saeeseens 187
Where to 80 fromM NEre7 ...ttt er e eae e nen 199
Chapter 6: Brainy Bots........ooeeiiiicecieceeceenee. 201
[, robot — decision-based Al ...t 202
The robot takes @ jab at it ...t 202
RODOt Daby SEEPS.....eeeeeeeeeeeecec e 206
NAVMESNES LOT ...ttt ettt se e ebesse e b e beeseens 206
NAVMESH fOr the Al ...ttt seens 212
Making the robots WalK.........cuoeieeeeeeeee et 218
If bots ONlY had @ Drain e ens 224
WIHEINZ TNE Al ettt ettt be b bbbt b bbb nnan 230
Stop the robot iINAIZREINGc.voeeeeeeeeee s 240
Heroes feel Pain t00 ... ettt ere e e ens 244
Where to 80 fromM NEre7 ...ttt eae e 248
Chapter 7: Pompadroid’s Playbill..........cccccveeuenn..... 250
RODOt COIOMNG L1007 ...t ae e bbb nan 251
AddiNG rODOL CLASSESoouveeeeeeeeeeeececcceeeceeceee et r e ere b nan 255
LevelData’s iNNEr WOIKINGS ...ttt vessessesenenees 264
Heros deserve heroiC @ntranCes ... et 277
Where to 80 fromM NEre7 ...ttt eae e 290
Chapter 8: Power Attackscceovvvvvvvevevevveeeeeeennee, 292
The rules of ENGAZEMENT........ceeeeeeeeeeeeeeeee ettt 293
RUNLQEACK! .. ettt s s sa e s be s nees 320

h raywenderlich.com 7

Beat ’Em Up Game Starter Kit

1-2-3 COMDO ceeeeeeeeetee ettt sa e se e s s e saeaebe s esaesenenens 325
It's about to get SParky iN NEre ...t 332
Where 0 80 froOmM NEIEY ...ttt et sae e ens 338
Chapter 9: Heads-up Display and Mobile UlI.......... 340
Creating the Ul ...ttt s e sa e 340
Bashing droids on-the-go with mobile Ul ... 374
Where to 80 fromM NEIE7 ...ttt 387
Chapter 10: Big Bad Boss and Powerups................ 389
The DIgZ DA DOSS ...ttt sae e s s ens 390
BUIIA the DOSS ...ttt be bbb bbb nan 391
Powerups: the boss’ worst nightmare ..., 401
Setting UP the IOVES.......eeeeeeeeeeeeeeeeeeeeeeeee et eae e sbenens 403
Where to 80 fromM MBI ...ttt 432
Chapter 11: Audio and Final Touches....................... 433
The IMportance of SOUNd ...ttt sae e ens 434
Overview: Unity’s audio tOOIKItcoeveeeveeiiieiceeeeeeeee e 434
AdAING QUAIO ...ttt ettt se s e s e s e e sesa e e seaenans 437
Polish, admire, rEPEAL ...ttt re s ens 448
SQUASNING DUES ..ottt sessessessessessennens 457
Where to 80 fromM NEIE7 ...ttt 475
Chapter 12: Running on Mobile Devices................. 476
RUNNING ON ANAIOId......oiieeeieeeeeeeeeeeeeeeeeee e seese e s s ssessesenan 477
Where to 80 fromM eI ...ttt 495
Appendix: GridSnapper Classes........cvveevveeveennnens 496
CONCIUSION ...ttt 500
More Books You Might Enjoy.......coeeeeeveveiiniiennns 502
NEW t0 IOS OF SWITEZ ...t nan 502
Experienced iOS deVEIOPEI? ...ttt seens 504
Want t0 MaKe ZaMES? ...ttt b e 517

h raywenderlich.com 8

Beat ’Em Up Game Starter Kit

Want to learn ANdroid OF KOTINT ... eeeeeeeeeeeeeeeeeeeeeeeeeeeeeteeeeeeeeseeeesveeesneeens 521

h raywenderlich.com 9

yok license

By purchasing Beat ’Em Up Game Starter Kit, you have the following license:

» You are allowed to use and/or modify the source code in Beat ’Em Up Game Starter Kit
in as many apps as you want, with no attribution required.

* You are allowed to use and/or modify all art, images and designs that are included in
Beat ’Em Up Game Starter Kit in as many apps as you want, but must include this
attribution line somewhere inside your app: “Artwork/images/designs: from Beat ’Em
Up Game Starter Kit, available at www.raywenderlich.com”.

» The source code included in Beat ’Em Up Game Starter Kit is for your personal use
only. You are NOT allowed to distribute or sell the source code in Beat ’Em Up Game
Starter Kit without prior authorization.

» This book is for your personal use only. You are NOT allowed to sell this book
without prior authorization, or distribute it to friends, coworkers or students; they
would need to purchase their own copies.

All materials provided with this book are provided on an “as is” basis, without warranty
of any kind, express or implied, including but not limited to the warranties of
merchantability, fitness for a particular purpose and noninfringement. In no event shall
the authors or copyright holders be liable for any claim, damages or other liability,
whether in an action of contract, tort or otherwise, arising from, out of or in connection
with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this guide are the properties of
their respective owners.

h raywenderlich.com 10

Boelssource code and

forums

This book comes with the source code for the starter and completed projects for each
chapter. These resources are shipped with the digital edition you downloaded from
store.raywenderlich.com.

We’ve also set up an official forum for the book at forums.raywenderlich.com. This is a
great place to ask questions about the book or to submit any errors you may find.

h raywenderlich.com 11

Book'updates

Since you’ve purchased the digital edition version of this book, you get free access to
any updates we may make to the book!

The best way to get update notifications is to sign up for our monthly newsletter. This
includes a list of the tutorials that came out on raywenderlich.com that month, any
important news like book updates or new books, and a list of our favorite iOS
development links for that month. You can sign up here:

« www.raywenderlich.com/newsletter

u raywenderlich.com 12

roduction

What could possibly be a more amusing way to burn time than slaughtering a horde of
bad guys with trusty right and left hooks? Creating your very own beat ‘em up game, of
course!

Beat ‘em up games have been around since the inception of 8-bit games and
experienced their glory days when early console gaming and arcade gaming were all the
rage — long before the world turned to pixels in the early part of the 21st century. :]

Although they’re less popular today, you can’t deny that beat ‘em ups follow a winning
format. The premise is straightforward: walk toward one side of the screen and punch
the living daylights out of anything that moves. Games in this format are typically side-
scrolling and two-dimensional.

A few classic beat ‘em ups have stood the test of time: Double Dragon, Teenage Mutant
Ninja Turtles, Golden Axe and Streets of Rage.

Some games have managed to appeal to sense of nostalgia while employing modern
game technologies like player progression or a touch-based interface. Castle Crashers
and Scott Pilgrim vs. the World are good examples.

Seeing as how you have this starter kit in hand, I can deduce that you’re no stranger to
the genre and have played most, if not all, of the aforementioned games. No wonder you
picked up this book!

Let me take this opportunity to say thank you for keeping the beat ‘em up spirit alive
and supporting raywenderlich.com. I sincerely hope that with the help of this starter
kit, you’ll make a “knockout” game that I can play one day.

Want to see what it will look like? Come closer! Note the mobile controls, colored
sprites, destructible objects, weapons, hit effects, HUD, etc.

h raywenderlich.com 13

_ - oy =

=

A

What is a starter kit?

In the third edition of this popular book, we’re walking you through building the game
on Unity.

Note: Previous versions of this book were written for cocos2D and SpriteKit; at the
time, these were popular for creating 2D games.

Once Unity released 2D tools, it quickly became the game creation engine because
developers can create a game once and build it for a number of platforms. The dark
days of building for one platform, then painstakingly building your ingenious
game on another engine for a different platform are over!

More than a book, this full-flavored starter kit equips you with tools, assets, fresh
starter projects for each chapter, and step-by-step instructions to create an addictive
beat ‘em up game for Android and iOS. In addition to walking you through processes for
building the game, you’ll receive an intimate backstage tour of Unity!

Our objective is for you to walk away with enough knowledge of Unity so that you can
start creating games on your own.

Each chapter builds on the last. You build out features one at a time, allowing you to
learn at a steady, logical, and fun pace.

K

Components were designed with reusability in mind so you can easily customize the
resulting game.

In the spirit of Unity’s motto “Build once, deploy anywhere”, you’ll be able to run the
game on Android and iOS platforms.

We hope you enjoy this Unity edition as much as we had fun creating it, and thank you
again for purchasing the Beat ‘Em Up Game Starter Kit Unity Edition!

This starter kit is for beginner to intermediate developers who have at least poked
around Unity, perhaps even built a game, but need guidance around how to create a
beat ‘em up game.

You’ll get most from this book if you’ve fulfilled the prerequisites below, or have
equivalent experience and pick up new IDEs and languages quickly.

However, if you’re a complete n0Ob with Unity or programming, it’s possible to follow
along with this book, but you may experience a steep learning curve. There are many
steps ahead, so don’t rush and do not expect perfection from yourself the first time
through. Follow the steps carefully, copy and paste the provided code, and check your
work against the screenshots for the smoothest learning experience.

Regardless of your skill level, remember that if you get stuck, you can revert to the
starter kit for the current chapter, or pull up the final kit and run diff checks to identify
where things went wrong.

This book assumes you have a few programs installed and some skills before you dig
into the first chapter:

» A computer — any operating system will do — with the latest version of Unity
installed.

o Familiarity with Unity and the C# programming language
For the last chapter only:
» The Android SDK installed on your computer

e An Android device

K

* A computer running macOS with Xcode installed
e AniOS device

» Apple developer account

Note: If you are unfamiliar with Unity or C#, I recommend going through both
parts of the “Introduction to Unity: Getting Started” tutorial:

Part 1:
Part 2:

There are a number of other Unity tutorials, including several on C#, available on
our website if you want to dive deeper:

Lastly, if you don’t want to go through the hassle of getting the SDKs or devices,
don’t worry about it! The book can be completed without testing on a mobile
device — just skip the last chapter.

There are several ways you can use the Beat ‘Em Up Game Starter Kit:

 First, you can look through the complete sample project and begin using it right
away. You can modify it to make your own game or pull out snippets of code you find
useful for your own project. As you look through the project, you can flip through the
chapters and read up on any sections of code you’re not sure about. The beginning of
this guide has a table of contents that can help, and the search tool is your friend!

» A second way to use the starter kit is to go through the chapters one by one and build
the game from scratch. This is the best way to use this book because you’ll literally
write each line of the main gameplay code.

e Third, you don’t necessarily have to do each chapter—each chapter includes a
starting and final project, so you can skip around with confidence. You’ll find the
final projects helpful for debugging and as points of reference for what it “should”
look like.

You start with nothing and build the game from the ground up! Here’s what you can
look forward to in each chapter:

In this first chapter, you’ll take a crash course on Unity and get started with creating
your Unity Project and main menu scene.

While creating the main menu for the game, you’ll get your first taste of Unity and its
interface. You’ll also create a button and script that navigate to your second scene, the
game scene.

This chapter is all about tile maps: smaller repeating sets of sprites to form up, a bigger,
more elaborate picture. With this, you’ll create the retro background sprites for your
game. You’ll also learn how sprites are drawn in the scene and you’ll understand a key
feature of Unity: prefabs! These allow you to save GameObjects, allowing you to create
objects on demand.

This chapter is all about setting up the game scene: implementing cool techniques that
allows you to create a “2.5 dimensional” game with the engine. Being the cunning
developer that you are, you’ll accomplish this by rotating all assets in the game.

Don’t forget about the hero! Introducing the Pompadoured Hero, the protagonist of the
game! You’ll learn how to process user input, animate a 2D character and create bounds
to keep objects, especially the hero, within view! With the help of the keyboard inputs,
you’ll create a hero with stunning hair.

This chapter creates new actions for the hero, empowering him to be a genuine, bot-
crushing warrior. You’ll begin by simulating a directional double-tap gesture to make
the hero run.

Building on your virtual control scheme, you’ll create and add two custom buttons to
make the hero perform other actions, such as jabbing. Then you’ll enhance the 3D feel
of the game with shadows and jumping.

K

Aside from new actions, you’ll also learn an important process: refactoring! You’ll re-
organize the hero script, resulting in cleaner code that is easier to reuse and
understand.

In this chapter, you’ll spawn an enemy robot for the hero to fight. You’ll give each rust-
bucket a special animation that will play when hit, and a life counter that will knock out
the robot. You’ll also work with the layering of physics objects and collision handling,
which will let the hero beat up some helpless robots until they die. Poor, poor robots.

It’s the revenge of the fallen! In this chapter, you’ll develop artificial intelligence for the
robots, implementing a system of weighted decisions that will determine each robot’s
action. This time, the robots won’t stand idly by while the hero pummels them—they
will aggressively fight back.

In this chapter, you’ll enable your game to handle battle events: a situation requiring
the hero to fight enemies until no enemy is left standing! You’ll also control and define
enemy spawns using ScriptableObjects, creating levels for the game.

Additionally, you’ll enhance the game, and the hero’s ego, by adding entrance and exit
animations whenever a level starts or ends.

Naturally, you’ll want to trick out your hero with flashy moves. In this chapter, you’ll
dig deep and learn to extend the current actions system by giving the hero the ability to
do a chained attack with a 1-2-3 punch. You’ll also give him combination actions, such
as a jump punch and a running kick.

At this point, the game will need a few swipes of polish, so you’ll fix a few bugs and add
a hit effect for everything that punches in the game. Additionally, you'll add logic so the
hero gets knocked out when he takes too much damage!

You’ll begin the chapter by creating a heads-up display (HUD) to keep the player
informed of critical stats, such as hit points and when to move forward on the tile map.
Then, you’ll further polish the game with floating damage numbers and explosive hit
animations for each attack.

Lastly, you’ll add on-screen controls to enable the game for mobile devices: a
directional pad (d-pad), as well as attack and jump buttons.

Boss characters are essential. Bigger, badder and more barbaric than the other
antagonists, they are a hero’s most formidable enemy. In this case, the boss will be an
ape-like monster with a high-top fade. You do not want to get in its way!

To give the hero a fighting chance, you’ll also add a powerup to the game: the Punch-a-
tron Operational Work-gloves 300, or POW 300. This glorious pair of mitts allow the
hero to punch harder, giving him extra “oomph” when fighting the boss. You’ll also
create trash bin containers; when punched, they drop these mighty gloves!

It’s the homestretch! In this chapter, you’ll add the final piece: audio. You’ll add a
catchy background theme song, along with hit effects and death sounds for all actors in
the game.

To get the game ready for release, you’ll fix bugs as well. By the end of this chapter,
you’ll have a complete and polished beat ‘em up game!

The game will be done at this point, but one final task remains! In this chapter, you’ll
run PompaDroid on a mobile device! You’ll add platform-specific controls for Android,
and create builds for Android and iOS to show to your friends!

I would like to thank several people for their assistance in making this starter kit
possible:

To Ray and the tutorial team: Thanks for the great tutorials that helped me in
learning programming for iOS.

To my family, for their patience and support in creating this book.
To my colleagues at Monstronauts, who have motivated me in completing this book.

To Jeng: for her patience and help editing this project. Without her, this book
wouldn’t be as good as it is.

And most importantly, the readers of raywenderlich.com and you! Thank you so
much for reading our site and purchasing this starter kit. Your continued readership
and support is what makes this all possible.

pter 1: Getting Started

Welcome to the first chapter, where you’ll start your journey in the same way you start a
game — through the title screen!

As you assemble the first bits of your game’s Ul, you’ll go through the basics of Unity
and familiarize yourself with the Unity editor. By the end of it, you’ll be well on your
way to making your very own beat ‘em up game.

What are you waiting for? You’ve got games to build and things to beat up! Get to it!

Note: If you're already familiar with Unity, feel free to skip ahead a bit to the
section Creating the title Scene. On the other hand, if you feel a little rusty or you’re
new to Unity, start from the top!

h raywenderlich.com 21

Creating a Unity project

Start up Unity and click New. You’ll see the following window:

Projects Learn

Pl Open '@' My Account

PompaDroid

2D

v

Configures Image Import, Sprite Packer, and Orthogra...

Add Asset Package

(@ oFF) Enable Unity Analytics (2)

Create project

» Enter PompaDroid as the Project Name, and then select the Location to where you

want to save the project.

Select 2D as the Template. Finally, click the Create Project button.

Just like that, you created your very first Unity project. Since you went with 2D settings,

your images will all import as 2D sprites instead of textures.

If you feel compelled to change this, you can do so under Edit\Project Settings\Editor.

It is labeled as Default Behaviour Mode.

Default Behavior Mode

Mode

Sprite Packer

Mode
Padding Power

2D

D
D

3
2
1

Note: You’re probably wondering why you named the game PompaDroid. As you’ll
soon see, the main character has a funky pompadour hairdo, and he’s about to
beat up on a bunch of droids. My apologies in advance to the Android devs out
there.

With the Unity editor now open, first things first: you need to set the target platform.
On the menu at the top, select File\Build Settings. Select iOS in the Platform section.

At the bottom of the window, click Switch Platform, and then check Development
Build.

Close the window.

You’ve just set up your game to run on iOS devices. If you prefer to build for Android,
just do the same thing but select Android instead of iOS. It’s that simple to build the
same game for a different platform!

Note: If you encounter a “no module loaded” error for the desired platform, just
download the module by clicking Open Download Page. Go through the steps to
get the install process going, then come back to set up your folders and go through
the crash course. When installation finishes, you can just circle back to finish

setting up the platform.
= i0S

No iOS module loaded.
| Open Download Page |

Depending on which Unity version you are using, starting a new project may or may not
include starter files for you to use. These files are not necessary for PompaDroid. If your
starter project is not empty, the following steps will help you delete all of the unused
assets.

Create a new scene by choosing File\New Scene in the top menu. Once a new Scene has
been loaded, select all files inside the Assets folder in the Project view, and right-click
Delete to remove them from the project.

Setting up the Project Folders

Now is an excellent time to think ahead and set up a system for your project files —
orderly assets are easier to find.

In the Project window, right-click the Assets folder and select Create\Folder. Name
this folder Scenes.

Repeat these steps and create Images, Prefabs and Scripts folders.

No surprises here — you’ll save your various assets in these folders.

Unity crash course

You’re at the point where it’s time for a Unity editor crash course. Unity veterans may
want to skip this part.

Note: If you want a not-so-quick explanation about using the Unity editor, you
can read more about it at http://docs.unity3d.com/Manual/UnityOverview.html.

O RS [X [BE] [evpvo [$Local] = ———
= Hierarchy © Inspector

N
Tag | Hero 4| Layer| Friendly +

Directional Light

» GameManager

» Controls Canvas
EventSystem
World Canvas

» Ul Canvas
Hero

ero —

» Map1Prefab v[c) ¥ Hero (scripy RS
Script I Hero 6]
Base Anim (52 animator (Anim:
Shadow Sprite Iishadow_charact

Is Grounded -

A Hero (Rigidbody|
.
Hit Value Prefab \» HitValue
Spark Object \s HitParticle o
Life Bar None (Life Bar) 5]
Max Life 200 |
@ Project Current Life 20(|
| create - @ | &[N & ||| IsAlve 4
¥/ Favorites Assets » Prefabs » Map » Is Knocked Out O
@AII Materials (& Map Slices Base Sprite I5'heroSprite (Sprit ©
©LAll Models » ¢ Map1Prefab Attack Clip @hto @
(©LAll Prefabs » g Map2Prefab Die Clip herodeath)
©LAllscripts &5 MapTemplate Audio Source ©l Hero (Audio Sou ©
T Actor Thumbnail [Elui_hp_hero_thul ©
» & Animation » Normal Attack
Audio Attack Limit
Backgrounds Can Jump Attack (m]
» &l Images Evaluated Attack Chail0 |
LevelData Chain Combo Limit
(& Physics Material Direction Face
v Prefabs x[0 v[o 1z[0 1
_’ fScenes |VIII:|:! {- GameManager (| @
> Scripts Shee X
| O— Run Speed 5 ;1

The Unity editor comprises several windows. Except for the toolbar, all windows can be
detached, docked, grouped and resized. Go ahead, try dragging and dropping things to
see what you’re working with here.

Its interface allows you to create a variety of layouts that suit personal and project
needs, so your layout may look unique from other developers’ layouts.

Toolbar
1 ¢+ BIEIEIRIIEEETED

= Hierarchy
| Create - | (@Al D
v € Game* =

MlHero] [satic v
Tag | Hero + | Layer| Friendly +

Directional Light
» GameManager Prefab | Select | Revert | Apply |
» Controls Canvas ¥ .~ Transform o
FuentSustem Position X 0 Yo zo

The toolbar contains essential tools you need for manipulating GameObijects.

NIK IE=EIEA

These tools let you manipulate the Scene view and its GameObjects. From left to right,
these are:

Transform tools

K

* Grab tool: Allows you to pan around the Scene view.

» Translate tool: Used for moving GameObjects.

» Rotate tool: Allows you to rotate GameObjects.

» Scale tool: Used to scale GameObijects.

» Rect tool: Allows you to manipulate 2D elements in Unity (Sprites and UI).

» Transform tool: Allows you to move, rotate and scale using only one tool.

Transform gizmo toggles

| =8 Center | ® Local |

Toggles are what you use to change how transform tools affect GameObjects. From left
to right, these are:

» Pivot Toggle: Toggles whether transforms happen from the center of the
GameObjects or around their pivot points. It’s useful when rotating GameObjects.

» World Space & Local Space Toggle: Toggles whether the transforms should work
on world or local space.

Playback buttons

=

These buttons allow you to run and test your game. From left to right, these are:

« Play button: Runs the current scene.
» Pause button: Pauses and resumes the game.

» Step button: Allows you to jump forward by one frame when the game is paused. It’s
useful for hunting down pesky bugs.

Hierarchy

BRI IEENEA @ Local

= Hierarchy

Directional Light
» GameManager
» Controls Canvas
EventSystem
World Canvas
» Ul Canvas
Hero

» Map1lPrefab

The Hierarchy is a complete list of all GameObjects in your current scene.

Scene view

K =@ Center

Account ~

@ Local

© Inspector

W e
Tag | Herc
Prefab E
V.o~ Tran
Position
Rotation
Scale
v |G| ¥ Hero
Script
Base Anim
Shadow Spr
Is Grounde
Body
Speed
Hit Value Pr.
Spark Objec
Life Bar
Max Life
Current Life
(@ Is Alive

Assets » Prefabs » Map » Is Knocked |

I — Darn Comvitn

The Scene view is a viewing window into the world you’re creating. You’ll be able to
select, position and manipulate GameObijects here.

Project window

The Project window, sometimes referred to as the Project browser, contains all the

assets that belong to your project. You can add, delete, search, rename and move assets
here.

» The left-hand side shows your project’s folder structure.

o The right-hand side shows all the assets contained in the folder you’ve selected on
the left.

Game view

HEALTH

NP -
g

Beat ’Em Up Game Starter Kit Chapter 1: Getting Started

The Game view renders what the camera(s) sees. It’s a decent representative of the final
product.

Inspector window

The Inspector window is for viewing the GameObjects’ properties, assets and other
preferences and settings.

Basic Unity concepts

You have a basic understanding of how to get around in the Unity editor. Now get ready
to absorb a few more core concepts that’ll help you make the most of this book.

GameObjects

Meet the fundamental objects in Unity. Without them, you have...nothing.

They are the “things” that make up a game — literally what the name implies: objects in
your game. They can be trees, lights, floors, cameras, a ball, a car, a slice of bacon, a hot
buttered waffle, etc. (Hungry yet?)

The Hierarchy window lists GameObjects used in the current scene.

h raywenderlich.com 29

Beat ’Em Up Game Starter Kit Chapter 1: Getting Started

GameObijects are basically containers that can contain components, which are building
blocks that define a GameObject’s capabilities. Components allow GameObjects to
display images, play audio, think with an AI, handle physics, display 3D meshes and so
much more!

Unity comes with many built-in components, but you can (and will) create some of your
own by scripting — more on that later.

The following shows all the components that belong to the GameObject named Hero.

A GameObject doesn’t fly solo; it always has a transform component that determines
the GameObject’s position, rotation and scale.

h raywenderlich.com 30

© mspector |G

'MapsSlice | Clstatic «

Tag | Untagged 4 | Layer| Default &l

¥ .~ Transform (] 2
Position X 0 'Y 0 'Z 0 |
Rotation X 0 YO 'Z o |
Scale X1 1¥[1 1z 1 |

UI elements (still GameObjects) have a much more complicated transform called
RectTransform. You’ll learn about them in a later chapter.

© inspector |G

W Ul Canvas | [static «
Tag | WorldCanvas 4 | Layer| Ul $
v55 Rect Transform @ = %
center Pos X Pos Y Pos Z
@ 0 10 10 |
B - | width Height
E ‘100 1100 | [3]r]
¥ Anchors
Pivot X 0.5 'Y 05 |
Rotation X 0 'Y 0 'Z0 |
Scale X[1 |¥|1 |z |1 |

Parenting

Parenting is simple. Well, at least it is in the Unity engine! Any GameObject can become
the child of another GameObject. The Hierarchy view is where you see and manipulate
children and parents. Child GameObjects are indented beneath their respective parents.

There are no limits on how many children a parent can have, but each child can only
have one parent.

The next image shows you an example of such a relationship: Image is a child of
Joystick, and Joystick is a child of Controls Canvas. It's just one big, happy family in
there!

To make one GameObiject a child of another, just drag one over another in the
Hierarchy. To unparent, just do the opposite — it’s as easy as pie!

In the example, GameObiject 1 is now a child of GameObject 2:

GameObject 2 ‘% ¥ GameObject 2

GameObject 1
You’ve finished the Unity crash course and have the basic understanding you need to
start creating a game!

Don’t worry if you’re not totally clear on everything so far. You can always come back to
this part to refresh your memory, and trust me when I say you’ll become very familiar
with the engine as you create PompaDroid.

Creating the title scene

You’ve created the project and are ready to build. When you first visit a new project,
Unity greets you with a new, unsaved scene.

To save it, select File\Save Scene and name the scene MainMenu. Navigate to the
Scenes folder and click Save.

Saving is simple enough. Look closer at the scene — contrary to what you might think it
isn’t empty. By default, Unity created a Main Camera GameObject.

K

You don’t need it for the title scene, so select the Main Camera in the Hierarchy
window, right-click and select Delete.

Your scene won’t stay empty for long!
Find the Images folder under Assets in the Project window.

Right-click and select Create\Folder. Name it MainMenu — this is where you’ll add
all the assets you need to make the title screen.

Open MainMenu then right-click it and select Import New Asset. Navigate to the
Chapter 1 Assets folder that comes with this book.

Import bg_title.png, bg title_touchtostart.png and bg_title_txt.png to MainMenu.

@ Project . [console
‘ Create ™
\ A, Favorites Assets » Images » MainMenu

(©L All Materials

©1 All Models
'* All Prefabs , \° W‘@
LAl Scripts

y% Assets bg_title bg_title_tou... bg_title_txt
v &l Images
= MainMenu
W Prefabs
&l Scenes

Note: An alternative way to import files into Unity is to drag the files directly into
the Project window.

Now select the three assets you just imported in the Project window. Go to the
Inspector and set Pixels Per Unit to 32 and set FilterMode to Point. Click on Apply to
save your changes.

Beat ’Em Up Game Starter Kit Chapter 1: Getting Started

© inspector |8 Navigation G e

- bg_title Import Settings *,

Max Size

Compression

Format

Use Crunch Compression ||

What did you just do?

 Setting the value of a world space unit in Pixels Per Unit means that 1 Unity world
space unit equals 32 pixels.

» Setting Filter Mode to Point means textures will look blocky when magnified. Perfect
for pixel art. This setting determines what happens when an image is stretched.

The assets are ready to use on the title screen — speaking of title screens, here’s what
yours will look like:

h raywenderlich.com 34

Touch tTo Start

How are you going to make that? By using Unity’s UI of course!

Set up the canvas

In the Hierarchy window, click Create\UN\Image to create three new GameObjects and
a plain white box:

= Hierarchy 3 Scene
|create | @A) ||| Shaded
v & MainMenu* =
¥ Canvas
Image
EventSystem

A canvas comprises three components: canvas, canvas scaler and graphics raycaster.
You’ll find them in the Inspector.

Remember that you’ll need to create a canvas for all UI objects in Unity.

» The Canvas represents the space where the Ul is drawn. You’ll learn more about this
later. For now, just keep in mind that all UI elements have an ancestor of a canvas
component that renders on screen.

K

* The Canvas Scaler handles the overall size of the canvas. A common use case is
when you want the game’s Ul to scale automatically to the current screen size.

» The Graphics Raycaster determines if a raycast can hit a canvas. It’s important
when setting up correct Ul functionalities such as button clicks.

Secondly, Unity also created an Image GameObject as a child of the Canvas
GameObject. It contains two components: a Canvas Renderer that’s required to render
a Ul object on a canvas, and an Image component that draws the sprite set in the
source image field.

Lastly, there’s also a new EventSystem GameObject containing an Event System
component that handles all the events the Ul system uses. You won’t be able to interact
with UI elements without this component. It also contains a Standalone Input
Module to handle game input.

Add the background image

Select the Image GameObject from the Hierarchy. Next, open Images\MainMenu
from the Assets folder in the Project window, and drag bg_title to the Source Image
field in the Image component.

Tadaaa! The white square on the screen now shows the bg title image — you may need
to zoom out to see it.

(O[S = ol & > uml (&) [accoun -] [avers] [Lovour -]
= Hierarchy .= i Scene +=| © Inspector =

‘ Create “ arall
v
¥ Canvas

g ™ [Image [Jstatic v
Tag | Untagged + | Layer| vl

> 3@ Rect Transform
@ Canvas Renderer

v Im; ri
Source Image [Zlbg_title

= B ol

EventSystem

3]
#L| &L &L
B B B

i
]

Color 4

Material [None (Material) | ©

Raycast Target

Image Type Gpe 3]

Preserve Aspect [|

Set Native Size

M e Add Component]

JCreau“ =~ |a|™|*

iy Favorites Assets » Images » i
@AII Materials
©1 All Models
(©1 All Prefabs
@AII Scripts

bg_title bg_title_tou... bg_title_txt

Vil Assets
v & Images

Wl Prefabs
&3 Scenes

Image
Image Size: 568x384

Note: Another way to set the source image field is to click the knob on the right
side to open a sprite selection window where you can select the sprite you want.

v "4 M Image (Script) @ 3 %
Source Image 2l bg_title =]
Color |
Material 'None (Material))
Raycast Target
Image Type | simple ™

Preserve Aspect []
[Set Native Size]

Take a closer look. It’s there...but why is it shrunken, squished and squared off?

It definitely shouldn’t look like this!

Make it pretty with the canvas scaler

First, you need to determine the resolution and pixel per unit import settings for
bg title.

Select bg _title in the Project window and check the pixel per unit value.

© Inspector | 38 Navigation . -=

- bg_title Import Settings &,
 Open |
Texture Type | Sprite (2D and UI) 2
Texture Shape | 2D + |
Sprite Mode | Single 2
Packing Tag | \
Mesh Type Tight &
Extrude Edges < h
Piunt [cantar s

For the image resolution, select the sprite (bg title) in the Project window and check
its properties at the bottom of the Inspector.

568x384.(NPOT)_RGB.24 bit 0.6 MB

AssetBundle

You imported bg title at 32 pixels per unit and its dimensions are 568 x 384 pixels, so
you still need to configure the canvas scaler to match these settings. Remember, this
component scale’s the Ul to fit the screen size.

In the Canvas Scaler component of the Canvas GameObject, change Ul Scale Mode
to Scale With Screen Size. Set Reference Resolution to the sprite resolution of 568 x
384.

Set Screen Match Mode to Match Width or Height, and Match Value to 0. Finally,
set Reference Pixels Per Unit to 32.

K

v i M canvas Scaler (Script) @ = %
Ul Scale Mode | Scale With Screen Size $]
Reference Resolution X 568 Y 384
Screen Match Mode | Match Width Or Height s
Match O 0

Width Height
Reference Pixels Per Unit 32

Now you can fill the screen with the background image.

Select the Image GameObject. Set both PosX and PosY to 0 to center the image, and in
the Image component, click Set Native Size.

There you go! Now look at the Game view and change the resolution by selecting
various devices from the top-left drop-down selector. You’ll notice the image stays
fullscreen because the canvas scaler now knows to maintain its size at bg title’s
resolution!

Add text sprites to the title screen

Now you have a lovely textured wall, but there are no prompts to tell players what to do
next. This is a job for a text sprite!

Create two more images by right-clicking in the Hierarchy, then selecting UN\Image.
Rename the first Image GameObject to TitleText by right-clicking and selecting
Rename.

Drag bg title_txt to the Image component’s Source Image.

K

Rename the second Image GameObject to TouchToStart and then drag
bg_title_touchtostart to the Image component’s Source Image. Click the Set Native
Size button on both Image components. Make sure that both TitleText and
TouchToStart are children of Canvas.

Cseene e

Shaded = 20 S | (eral

™ nldﬁm?:ﬂ'ﬁt-. ™r-

Hmmm, that’s not quite right. Seems like a good time to go over repositioning things.
TN
O & | S | = po

Select the Rect Tool on the toolbar — it allows you to change the position, rotation,
scale and dimensions of 2D GameObijects.

Select TitleText and drag it around the selection box in the Scene view, then do the
same with TouchToStart until you have something similar to this:

= Hierarchy

] Create 'I

v € MainMenu*

¥ Canvas
Image
TitleText
TouchToStart
EventSystem

'-hfﬂlulrﬁtﬁlr-irﬁfﬂ1'rﬁ

1= — m AN EER
= - . mEE maw

Touch tTo Start

If one of the sprites “disappears” after you drag it around, check the order of
GameObijects in the Hierarchy and make sure your screen matches the above
screenshot.

Now you’ve got a legitimate title screen!
Note: Alternatively, you can change positioning from each sprite’s Rect transform

component. Set a specific value by typing it in or dragging the text of the value
you want to adjust.

V}@ Rect Transform -
center W‘ Pos Z
P 0 0 0
3| HH Width Height
- = -
» Anchors
Pivot X 05 Y 05
Rotation X 0 Y O Z 0
Scale X1 Y1 Z|(1

This is the moment you’ve been waiting for — click the Run button on the Toolbar.

What happens when the game is running? Absolutely nothing! There is nothing to
run...yet.

The next task is to allow the player to start the game from the title screen.

Buttons and scripts

In this section, you’ll create controls and points of interaction on your scene. Here's
where you’ll work with scripting for the first time.

Create a button

Users naturally look for things to press, tap and swipe, even when you've made them
non-essential. You should always add a button so the user has no doubts about how to
start the game.

Select Image in the Hierarchy, and then click the Add Component button in the
Inspector. Select UN\Button, and then on the newly created Button component, set
Transition to None.

K

© Inspector =
M 'Image | [Jstatic «

Q])

Tag | Untagged + | Layer| w 3] <4 ul

» 55 Rect Transform @ = % * Image

Canvas Renderer @ = # . Raw Image
v "4 M Image (Script) @ = Mask

Source Image [l bg_title) 232D Rect Mask

Color Vi ® Button

Material None (Material) [0}

Raycast Target M 2linput Fleld

Image Type | simple al v Toggle

v Toggle Group

=> Slider

. "Scrollbar

¥ Dropdown

."Scroll Rect
Selectable

Preserve Aspect [|
[

Set Native Size

Add Component

Note: Button transitions let you change the look of buttons when they’re pressed,
disabled, hovered over or selected. You don’t need any transitions for this title
screen, but don’t let that stop you from experimenting with various button
transition modes!

Currently, your button is merely an empty shell. You'll change that by adding a custom
script as a component to your canvas GameObject and creating a corresponding script
file in the root of the Assets folder.

Select the Canvas GameObiject, click Add Component and select New Script. Name it
MainMenu, set the language to C Sharp and then click Create and Add.

Find it under Assets in the Project window, drag it to the Scripts folder, and then
double-click the script to open it in your code editor.

Change the contents of MainMenu to match the following:

using UnityEngine;
using UnityEngine.SceneManagement;

public class MainMenu : MonoBehaviour {
void Start() {
//1
Application.targetFrameRate = 60;

//2

public void GoToGame() {

//3
SceneManager.LoadScene("Game");

}

K

}

Save the script and take a closer look at what you did:

1. Inthe Start method, you changed Application.targetFrameRate to 60, which limits
gameplay to 60 FPS (frames per second). It’s fast enough but helps your game avoid
being a battery hog, which could easily happen if you left FPS uncapped.

2. You added a method named GoToGame () and made it public so you can call it from
the button you created earlier.

3. SceneManager.LoadScene() loads another scene. In this case, a soon-to-be-created
scene named "Game".

Save, close the editor and return to Unity.

Give the button something to call

The Button component needs to call the GoToGame () method.

Select the Image in the Heirarchy. In the Button component, click the + that’s beneath
the OnClick() field. Drag the Canvas GameObiject to the field named None (Object).
Select MainMenu\GoToGame() from the drop-down to the right.

v ox [V Button (Script) %,
Interactable)

Transition | None &l

Navigation | Automatic Al

[Visualize]

On Click ()

| Runtime Only A

[Canvas (MainMenu) 0|

Well, that was pretty easy! Now your button calls MainMenu.GoToGame () whenever it’s
pressed!

Add a game scene

Start with saving your current scene by going to File\Save Scene. Afterwards, create a
new, empty scene by clicking on File\New Scene. Save this new scene and put it inside
the Assets\Scenes folder. Name it Game.

K

Open the MainMenu scene by double-clicking the Assets\Scenes\MainMenu scene
file in the Project window.

Run the game again and press anywhere on the screen.

Scene 'Game' (-1) couldn't be loaded because it has not been added to the build settings or the AssetBundle has not been loaded.
To add a scene to the build settings use the menu File->Build Settings...

Fail! Although you created a new scene, Unity doesn’t know whether to include it in the
game or not.

To add it, navigate to File\Build Settings. Drag the two scenes from the Scenes folder
to the Scenes in Build field. If needed, removed other scenes that are added and drag
the scenes to show MainMenu above the Game scene. Unity always starts from the top.

B3 Project | B console J (NOX BuldSettios
| Create ~ _ Scenes In Build
V7 Favorites Assets » Scenes (¥ Scenes /MainMenu 0
Allvaterials
All Models
All Prefabs /
©L All Scripts Q Q L~
V& Assets U Maintenu]
v & Images
ﬁ MainMenu
Wl Prefabs

Platform

a
é‘, PC, Mac & Linux Standalone E i0s

Run in Xcade
Run in Xcode as
a Android Symlink Unity libraries O
Development Build
&ty vos Autoconnect Profiler -
Script Debugging -
& MainMenu.unity @ Xbox One Scripts Only Build L]

Save the scene and run the game again. Click the background and there you go! You're
looking at an awe-inspiring empty scene.

You might notice an issue while clicking things in the title scene. For instance, if you
click the PompaDroid Logo or the Touch to Start text, nothing happens.

It's not really a bug, it's just that you haven't walked through making a transition to the
game scene. Don’t blame yourself for this one! :]

€ Game
16:10 Landscape (16:10) = Maximize on Play | Mute audio | Stats | Gizmos |~

Tauch

Scene is missing a fullscreen camera

Just like bouncers keep the rif-raf out of a club, your sprites currently block click events
from reaching the background. Your next task is to let the click events pass through.

Uncheck Raycast Target in the Image component of both TitleText and
TouchToStart to fix this.

Run again and click the text logo. It now transitions to the game scene! Bug fixed!

Where to go from here?

Congratulations, you now have a functional title screen at your disposal! Not bad,
especially since you're probably new to Unity.

At this point, you know how to:

» Set up a new Unity project

» Navigate the Unity editor

» Create a simple scene using Unity’s Ul

e And finally, load a new scene

K

You also dabbled with scripting and transforms.

Treat yourself to a well-deserved break! There's a lot to learn ahead. In Chapter 2,
“Working with Tilemaps”, you’ll start work on the game scene's background.

r 2: Working with

In Chapter 1, “Getting Started”, you got the hang of using Unity’s UI system to display
images, and you set up PompaDroid’s title scene.

Not quite the challenge you wanted? Strap yourself in because you’re about to feel the
burn and learn some very cool stuff!

This chapter is all about Unity’s 2D sprite system and how to create and design levels
for your beat ’em up game. You’ll also learn a cool map creation technique that's origins
trace back to the earliest days of video game development — tiled maps!

Working with tiled backgrounds

The background of PompaDroid will be composed of tiles, which are small, repeatable
sprites positioned side-by-side to form a bigger picture.

Why go through this process? Tiling saves space and texture when comes to game
backgrounds. Instead of creating one big sprite per level, you create a few images that
you can shuffle around to create a variety of interesting backgrounds.

Note: At the time of writing, Unity didn't have its own tilemap feature. As such, I
created an advanced technique to generate tilemaps from sprites, which I'm about
to share with you. Although you can make tilemaps in a similar way using the
tilemap system found in Unity 2017 and onwards, the editorial team and I feel that
this technique is worth learning.

h raywenderlich.com 47

&E\\\\\ » i

Q

4 ﬁ\\\\\\\\;\\,if AN \“

i1 | Simbahan, Jonathan
Variations on Tileable Sprites, 2016

Z \\\\\\\\\\\ e \\\\\\\\\ Mouse on Computer, Digital art

Switch to the game scene. Double-click the Game scene inside the Scenes folder in the
Project window.

3 Project

I Create '|

Vﬁ? Favorites Assets » Scenes
@AII Materials

e —
©) All Models
@ All Prefabs
©) All Scripts
Game
————

V Assets MainMenu
¥ &5 Images
& MainMenu

@l Prefabs

Note: If you’re familiar with tilemaps in Unity, you’ll be pleased to learn that you
can skip ahead. The files for this chapter have a package that contains a tiled wall
and floor. Import Complete Wall And Floor Sprites.unitypackage from the
Unity Packages folder and skip to the section named Optimizing Tiled Assets.

K

Importing tile assets

Import GridSnapper.unitypackage by double-clicking the package inside the "Unity
Packages" folder included with the book, or by selecting Assets\Import
Package\Custom Package on the menu bar.

Make sure you’ve imported GridSnapper.cs and GridSnapperInspector.cs.

These scripts make tiling much easier. Although we could explain how they work right
here, right now, it would be a little distracting. Visit the appendix section later to learn
more.

Import and configure the spritesheet

Create a new folder under Assets\Images, name it Background and import
tiles_image.png included with the chapter. Make sure the Texture Type is Sprite (2D
and UI) and set the Sprite Mode to Multiple.

Set Pixels Per Unit to 32 and click Apply.

© Inspector % Navigation o=
iles_i i @ %=
._. tiles_image Import Settings . v
| Open |
Texture Type [Sprite (2D and 1) ™
Texture Shape 2D $
| Sprite Mode | Multiple]
Packing Tag
Fixels Per Unit 32
Mesh Type [Tight
Extrude Edges Lo, 1
Sprite Editor
» Advanced
Wrap Mode [Clamp ™
Filter Mode [Bilinear ™
Aniso Level - 1
Default | & | D | o
Max Size | 2048 ™
Compression | Normal Quality $
Format Auto
Use Crunch Compression []
Apply

Locate and click the Sprite Editor button in the Inspector — this is where you’ll slice
the sprite into many small, "tile-able" sprites.

Select Slice in the top-left of the window. Set Type to Grid By Cell Size and Pixel Size
to (X:32, Y:32).

K

Slice ¢l Trim

Grid By Cell Size -

Type
Pixel Size x32 Y32 |
Offset X0 YO0 |
Padding X0 YO |
Pivot | Center 2l
Custom Pivot X 0 Y 0

[Slice]I

Click the Slice button then click Apply in the top-right to save the sprites. Close the
window.

Congratulations! You’ve sliced and diced tiles_image and have sprites to fashion into a
background.

Sprite Editor 002
ice $| Trim

I M
g e

T

Take a look at the Project window. Now tiles_image has a triangle next to its name.
Click it to expand and reveal the tiles.

@ Project

\C{u}ﬂu'\) [EYENES

¥/ Favorites
©) All Materials
©) All Models
©) All prefabs.
©| All scripts

A

ssets » Images »
Cl—

V3 Assets tles_image tiles_image... tles_image.. tiles_image.. tlesimage.. tlles_image.. tiles_image.. tlesimage.. tiles_image.. tiles_image.. tles.image.. tles_image.. tiles_image.. tlles_image.. tiles_image.. tiles_image.. tiles_image..

v G Images.

& MainMenu

 Prefabs
& Scenes

tles_image... tiles_image.. tles_image.. tles_image.. tiles_image.. tles_image.. tlles_image.. tles.image. tlles_image.. tiles_image.. tlesimage.. tles_image.. tiles_image.. tles_image.. tlles_image.. tiles_image.. tiles_image...

Assembling tiles

Now comes the interesting part of assembling tiles to make a background. You’ll need
two tilemaps: one for the wall sprites and one for the floor sprites.

o The wall tilemap will be seven tiles high and start at the bottom-left.

o The floor tilemap will be four tiles high and start at the top-left.

= 2

Note that you have half-tiles for both tilemaps. If you pair them up, they should fit
perfectly together. Look at how the wall half-tile matches up with the floor half-tile.

Make sure to enable 2D mode toggle in the Scene view to render the scene in
Orthographic projection so that all assets are now 2D.

#: Scene

Shaded

Meet the GridSnapper

If you’ve ever seen a professional lay “real” tiles, you probably saw them use tools to
create perfect lines and corners.

While you don’t need a bunch of tools to lay sprites neatly, you'll do yourself a solid by
creating a GridSnapper, which is an empty GameObject you'll make for each surface
and a reference point for each type of sprite you’ll lay down.

It'll save you from the pains of manually setting each tile by snapping them into place.
In the next steps, you’ll make this tool.

Open the game scene from the Project window.

In the Hierarchy, right-click and select Create Empty to make a new GameObject and
name it Wall Sprites. This GameObject will be the parent to all wall tile sprites.

In the Inspector, reset Transform values by setting position, rotation and scale to (X:0,

Y:0, Z:0),(X:0, Y:0, Z:0),and (X:1, Y:1, Z:1).

Note: Another way to reset is by clicking the gear on the right side of the
Transform component and selecting Reset.

Beat ’Em Up Game Starter Kit Chapter 2: Working with Tiled Maps

© Inspector

[™ [GameObject | [static v

Move to Front
Move to Back

Click on the multi-colored cube at the top-left of the Inspector to open a small
window. In here, you can pick the icon that represents the GameObject in the Scene
view — select one of the colored capsules.

Wall Sprites

Now your GameObject shows as a colored capsule label in the Scene view.

h raywenderlich.com

53

Neat, isn’t it? It's a reference point that's for your eyes only that you'll use when adding
tile sprites. It will not show in the actual game.

Click Add Component\Script and choose the GridSnapper to add it as a component
and observe what happens next.

Almost like magic, grid lines appear!

#H: Scene

0 | <) |-

2D Gizmos | ()

T e
O O O o e
N N e s e e e

The GridSnapper makes life much easier because it marks where tiles should go. Try
using different colors when you’re working with multiple GridSnappers; you can change
the field grid color as needed to stay organized.

Note: Are you tired of grid lines interrupting your workflow? Click the
GridSnapper component’s name in the Inspector to collapse the component and
disable the grid.

S P = —— - M |rloorsprites | Lidtaue ¥
Tag|Untagged 4| Layer[Defaulr %
Prefab | Select | Revert | apply
¥ .~ Transform i
Position X 4985 Y O zZo0
Rotation X 435638 Y -360 Z -360
Scale X1 Y1 Z|(1
| v} (¥ Grid Snapper (Script) S
ript [GridSnapper | e
Filename 'Floor
e e e e | Grid Color e
— [Snap To Grid

(Save Mesh To Floor.asset

[Add Component]

© Inspector
R cemoss Gn | | g o [FloorSprites | Ostatic +
Tag | Untagged + | Layer| Default B

Prefab | Select [Revert | Apply

¥ .~ Transform]
Position X 4985 YO Z0
Rotation X 435638 Y -360 Z -360
Scale X1 Y|l Z|1

v « |V Grid Snapper (Script) S

[Add Component]

Tile it up

Select tiles_image_141 under tiles_image in the Project window and drag it onto the
Scene view. Doing this creates a new GameObject with a SpriteRenderer component.
The sprite tiles_image_141 is also set as the SpriteRenderer’s sprite field — make it a
child of Wall Sprites.

K

Finally, reset the Transform component to center the sprite.

Note: Selecting and dragging multiple sprites on the Scene view won’t add
multiple SpriteRenderers. By default, Unity assumes you're making an animation
with those sprites. Press Alt on PC or Option on Mac while dropping to create
separate tiles without accidentally animating things.

@ ‘f‘ G i :ﬂ: - #9 Pivot | @ Local [& Collab v] @ [Account v] [Layers -] [Lavout -]
= Hierarchy 3 Scene .= | Inspector | Navigatio € Game -Animator & .=
| Create ~| (GrAT Shaded z
v Qcame" =

Main Camera
¥ Wall Sprites
tiles_image_141

@ Project]

| create -|

v {j Favorites
© All Materials
(© Al Models
©1 Al Prefabs
@AII Scripts

NEILYES

Assets » Images » Background

v & Assets

¥ Gl Images

&3 MainMenu

W Prefabs

(& Scenes

» Gl Scripts
v

tiles_image_134 tiles_image_135 tiles_image_136 tiles_image_137 tiles_image_138 tiles_image_139 tiles_image_140 Tiles_image_ 141 tiles_image_142

—)

You’ve just laid your first tile — the bottom-left wall half-tile to be precise. Just
continue to add the adjacent tiles (141-167 make up the bottom row), and position
them next to the previous tiles.

Placement doesn’t have to be precise, but you do need to remember to add tiles as
children of the Wall Sprites GameObject.

Add the tiles that go above your starting tile. Start the next row by placing
titles_image 114 just above 141, then use the screenshot below to help yourself find and
place the right tiles to build out the next five rows.

In this case, you should build up from the bottom. It’s easier and more efficient.

K

Remember that wall sprites are seven tiles tall, including the first tile you placed.

Note: Depending on your version of Unity, the tile number might differ from the
one listed above. No worries! You can check the tile names and if they fit together
by referring to the original tiles_image in the Sprite Editor, which you’ll find by
selecting the sprite in the Project window and clicking the Sprite Editor button
in the Inspector. Simply select any tiles in question to identify them by name.

Sprite Editor 00.2

Sprite Editor :I Slice #| Trim Revert | Apply | [l | Que— =)

= Wl

iilllllllll&@llIl&&@lll&@ﬁ&%ﬁ&

Zarann ‘§§SIII§M§HIIIIIIIIIII
7 R =

Name tiles_image_141

Position X0 Y 288
w32 | H(32
Border L0 TO
R0 B0
Pivot [Center +]
Custom Pivot X0 YO0

Make copies of tiled sprites

Keep adding tiles until you have a tileable chunk, where the left-most tiles can join with
the right-most tiles. These chunks will repeat to complete the map. In the example
below, the chunk is made from the with the three square designs, and then the door

K

design. Select all children of the Wall Sprites GameObject. Right-click and select
Duplicate.

In the toolbar, select the Transform tool. With the duplicate tiles still highlighted in
the Hierarchy, drag the newly copied sprites to the right in the Scene view.

Keep making copies until the level is as long as you want it to be.

Snap it all together

It’s tricky to position tiles exactly as when they're all misaligned like that. GridSnapper
to the rescue!

Select the Wall Sprites GameObject and go to the Grid Snapper component in the
Inspector — click Snap To Grid. GridSnapper will snap the tiles to the nearest possible
grid.

Scene © Inspector op-g_
| Shaded & - (M [wall Sprites (1) [Jstatic «
Tag | Untagged 4+ | Layer| Default |
Prefab | Select | Revert | aApply |
¥ .~ Transform @ = %
Position X0 YO0 Z|16.3

Rotation X 0 Y 0 zZo

Scale X1 Y|l Z|1
v o [/ Grid (Script) @ =t %

Script
Filename

- GridSnapper
|Background

(]

I

Snap To Grid

Save Mesh To B

kground.asset

[

Add Coponent

Lay down a floor

Now that you’ve made the wall, you need to make a floor.

Create an empty GameObject and name it Floor Sprites, and then reset its Transform.

Change the icon to a different colored capsule.

Add the GridSnapper component. Select tiles_image_168 from tiles_image in the
Project window and drag it onto the Scene view. Make this GameObject a child of Floor

Sprites GameObiject.

Now do the same as you did with the wall sprites, but this time, make it four tiles tall.

In this case, work downward from the initial tile.

Keep at it until you have a sizable level. Remember to Snap To Grid!

Congratulations, you finished the hardest part! Take a moment to save your scene and
maybe even leave your chair for a few minutes.

There’s a little more to set up before you’re ready for the next chapter.

Prefab creation

If you’ve ever wondered how to create expansive games without painstakingly building
each and every element, you’re in luck. This section is all about using prefabs to save
time, energy and a good bit of frustration.

In fact, I'm pretty sure the wall and floor sprites are begging to be your first prefabs.

The first step is saving the wall and floor sprite GameObjects so that you can reference
them in the future. Wait, what? Save GameObjects? How is that even possible?

A prefab is a template of a GameObject that stores the object and its children. It's like

the master copy. If you make a change to the original prefab, its instances also change.

Save the sprites!

Go to the Project view, right-click the Prefabs folder, and create a child Map folder
inside of that.

Drag the Floor Sprites GameObject from the Hierarchy to the Project window and
repeat with the Wall Sprites.

(ORI S =BG [ovevot [Slocal | (> 1 p) (o] [Account -]
= Hierarchy & -=| ## Scene € Gam E
| create - | (@Al)| | shaded

v & Game
Main Camera

4
]

» Floor Sprites
P Wall Sprites

\\\\\\\\\\\\\\\

@3 Project
| Create 'I
¥ |/ Favorites
@AII Materials
© All Models
© All Prefabs
@AII Scripts

Assets » Prefabs » Map

¥ G Assets

» Gl Images
v Prefabs Floor Sprites Wall Sprites

&5 Scenes
» &l Scripts.
You’ve just created two prefabs in Assets\Prefabs\Map. Both the floor and wall sprites
turned blue in the Hierarchy to let you know that these GameODbijects are linked to a
prefab.

Note: You can unlink a GameObject from a prefab by going to GameObject\Break
Prefab Instance in the menu at the top.

Just for fun: Try dragging the Floor Sprites prefab to the Scene view. Now you have
two Floor sprites. Amazing! But you only need one, so delete the copy of Floor Sprites
you just made.

= Hierarchy & -= | #Scene
| Create ~| (oAl) || | shaded | |20 || ¢ |)| &Iz Gizmos ~ | (@Al D
v Q Game*

Main Camera
P Floor Sprites (1)
P Floor Sprites
P Wall Sprites

£ project E Console & =
‘Create" (a \IA]‘X*
v 7 Favorites Assets » Prefabs » Map
@AII Materials
@AII Models
(©1 All Prefabs
@AII Scripts

Vﬁ Assets Floor Sprites Wall Sprites

v &5 Images
Background

You won't use the prefabs for the tilemaps you're making, but they are handy backups
and make it easy to create variations in the future.

Optimizing tiled assets

Have a look at the Hierarchy. Wow, so many sprites!

= Hierarchy = #tScene =
| create ~| (@AT) ||| shaded |20][% | <) | s Gizmos ~| (GrAl

v € Game* A

Main Camera |l

tiles_179
tiles_179 (1)
tiles_179
tiles_180
tiles_181
tiles_182
tiles_183
tiles_184
tiles_185
tiles_186
tiles_187
tiles_188
tiles_189
tiles_190
tiles_191
tiles_176
tiles_175
tiles_174
tiles_173

tiles_208 - A X\?\\&' ‘

ies: ; Q \\\i\\

e - A
wer_215
tiles_220
tiles_222
tiles_221

<«

A crowded Hierarchy is a bad idea. You’ll tidy it up by merging all the sprites into one
object. By doing so, you’ll turn the wall and floor sprites into meshes.

A mesh is simply a collection of points, named vertices, that are connected by lines,
called edges. 2D sprites are essentially four connected points in a 3D space. Add
something to draw on top of that, such as an image, and you have a 2D sprite.

Scene 00% # Scene oog_[# Scene : oo.g

Shaded Wireframe - Shaded Wireframe

Locate the GridSnapper component of the Wall Sprites GameObject, change the
filename to WallSprites and click Save Mesh to WallSprites.asset.

"® inspector | 8.
@ ¥ [Wall Sprites | [static
Tag | Untagged 4+ | Layer| Default Y|
Prefab | Select | Revert | Apply |
¥ .~ Transform o %
Position X -50 Y 20 12163
Rotation X 0 ‘YO 'z o |
Scale X |1 ¥ [1 |z[1 |
v « [+ Grid Snapper (Script) @ = %
Script (- GridSnapper (o]
| Filename WallSprites T
Grid Color |2
Snap To Grid

Save Mesh To WallSprites.asset

[Add Component]

Now you have a new WallSprites asset in the root of your Assets folder. It’s a mesh, but
you can’t use it just yet.

[console

Project

Create ~ ‘

iy Favorites Assets »

(©L Al Materials

(OLAll Prefabs
(©LAll Scripts

| = Assets
v &3 Images

(&5 Background

&3 MainMenu

¥l Prefabs
&5 Map
(& Scenes
» Gl Scripts

Images

Prefabs

Scenes Scripts

5 wallsprites.asset

Do the same for the Floor Sprites GameObject, but this time, change the filename to

FloorSprites.

If you check the mesh assets you made, they should look similar to this:

In the Hierarchy, remove Wall Sprites and Floor Sprites then select both
GameObjects. Right-click and select Delete.

Don’t worry; you saved the maps in the Prefabs\Map folder!

= Hierarchy

‘ Create ~

|

arAll

v Q Game*
Camera

Wall Sprite
Floor Sprit;

Copy
Paste

Duplicate

Create Empty
3D Object

2D Object
Light

Audio

Ul

Particle System
Camera

vVVvyVvYyYYvVYY

Add the meshes to the Scene

Create a new GameObject, name it WallSpritesMeshed and reset its transform. Add a
Mesh\Mesh Filter component and a Mesh\Mesh Renderer component to it.

In the Mesh Renderer component, set Cast Shadows to Off and uncheck Receive
Shadows. Set Light Probes and Reflection Probes to Off.

No need for reflections or shadows in a 2D game like PompaDroid.]

© Inspector
\WallSpritesMeshed | [] Static
Tag | Untagged 4 | Layer| Default N
b~ Transform @ #'1
¥ | Wall Sprites (Mesh Filter) %,
Mesh i WallSprites | o !
¥ ..\ ¥ Mesh Renderer #'{
¥ Lighting
Light Probes | off &
Reflection Probes [off $)
Cast Shadows [off $
Receive Shadows J
Motion Vectors [Fer Object Motion)] |
Lightmap Static J {
|
Lightmapping settings are currently disabled. Enable Baked Global
Illumination or Realtime Global Illumination to display these settings. {
|
¥ Materials {
Size (1 | !
Element 0 'None (Material) | o
Dynamic Occluded {
1

Now drag the WallSprites mesh from the Assets folder to the Mesh field of the Mesh
Filter you just created. This is the result:

Scene © Inspector &=
% - i v| (avn .
c <) | Glzmoz Ll —— WallSpritesMeshed [Static ¥
Tag | Untagged 4+ | Layer| Default)|
b .~ Transform %,
¥ |, Wall Sprites (Mesh Filter) &,
Mesh liii WallSprites []
¥ . ¥ Mesh Renderer %,
¥ Lighting
Light Probes [off +)
Reflection Probes [off ™
Cast Shadows [off N
Receive Shadows []
Motion Vectors [Per Object Mation i)

Lightmap Static |

Lightmapping settings are currently disabled.
Enable Baked Global lllumination or Realtime
Global Illumination to display these settings.

¥ Materials
Size [1]
Element 0 None (Material) []

Dynamic Occluded

A brief explanation of mesh renderers

Did you build a fancy fuchsia mesh? Um, no, you didn’t. At least not if you’ve been
following these instructions!

To understand why you got that, you need to understand how a mesh renderer works:

o The Mesh Filter component is required so the mesh renderer can access the mesh to
be rendered.

» Once it has access to the mesh field of the MeshFilter, the Mesh Renderer component
draws the mesh on screen with the materials specified in the materials field.

Mesh
Renderer

o=
Texture

~

Material

Materials and shaders

Materials are assets that define how a surface should render, and they determine what
to do through shaders.

Shaders are special code files used to calculate the color of each pixel on the screen.
They can also compute how light behaves on a given material.

You currently have a mesh but no material. It’s solid magenta because that’s what the
Mesh Renderer draws when there’s no defined material.

Navigate to the Assets\Images\Background folder and click Create at the top of the
Project window and select Material. Name it BackgroundMaterial.

'G\ZGZHEI\@] [w9 Pivot | @Local | (> [11 p]

[& Collab ~] @ [Account hd] [Layers v] [Lavout v]

L= Hierarchyil & -= | #Scene +=| © Inspector &=
| create -| @A ' 30 BackgroundMaterial %,
v € Game* = Shader | Unlit/Texture -
Main Camera
WallSpritesMeshed Base (RGB)
Tiling x[1 Y |
Offset X 0 Yo |

Render Queue 2000]
Double Sided Global lllumination]

@ Project]
| create -
7 -

V[Favorites Assets
@AII Materials
©L All Models
(©\ All Prefabs
©L Al Scripts

&=
[EYEYES

» Images » Background

E
@ BackgroundMaterial ———

BackgroundMaterial tiles_image

v Gl Assets

v & Images
& MainMenu
¥ i Prefabs
&5 Map
& Scenes
» (& Scripts

© BackaroundMaterial.mat

Select the material and set the shader to Unlit/Texture. Now drag tiles_image to the
Base(RGB) texture field.

© Inspector

BackgroundMaterial ¥,
Ishader | Unlit/Texture

Base (RGB)
Tiling
Offset
Render Queue ‘ 2000 |

Double Sided Global lllumination

BackgroundMaterial

Select the WallSpritesMeshed GameObiject, click the triangle next to Materials and
drag the Background Material to Element 0.

o9 Pivot | @Local |

¥ + EIEAIEio]

= Hierarchy # Scene
| Create - | (@Al Shaded
v € Game*

Main Camera
WallSpritesMeshed

| & | [Account -

© Inspector

“ 9 ¥ ‘WallSprit] static ¥
Tag [Untagged 4] Layer| Default 3]
PA T *
.. Wall Sprites (Mesh Filter) *,
Mesh [}

¥ ... ¥ Mesh Renderer *
¥ Lighting

Light Probes
Reflection Probes
Cast Shadows
Receive Shadows []

Motion Vectors

Lightmap Static]

& Collab ~

Lightmapping settings are currently disabled.
(1) Enable Baked Global Iilumination or Realtime
Global lllumination to display these settings.

¥ Materials

@3 Project Size 1
Create " »{ Element0 @ BackgroundMaterial o
v {}@Fiv;l)lrlles " Dynamic Occluded ¥
Materials
©1 All Models BackgroundMaterial *,
%2:: ;e:l::ss _'_:' > Shader [UnliyTextre -]
rip! D
w
v G Assets [Add Component]
v & Images
= Background BackgroundMaterial tiles_image
&8 MainMenu
¥ (& Prefabs
& Map
Scenes
> & Scri
(& Scripts —C)

There you go! You’ve transformed a bunch of tiles into a nice mesh.

Lay down the floor

Now you just need to add the floor and you’re all set!

In the Hierarchy, duplicate the WallSpritesMeshed GameObject and rename it to
FloorSpritesMeshed. Replace WallSprites in the Mesh field with the Floor Sprites

mesh.

© Inspector

(¥ FloorSpritesMeshed

|| static =

Tag | Untagged

4| Layer| Default

-

b .~ Transform By
¥ . Floor Sprites (Mesh Filter) ¥,
Mesh lili FloorSprites o
¥ ... ¥ Mesh Renderer &,
¥ Lighting
Light Probes [off +]
Reflection Probes [off +)
Cast Shadows [off :
Receive Shadows O
Motion Vectors | Per Object Mation ™
Lightmap Static L
‘ Lightmapping settings are currently disabled. Enable Baked Global
Illumination or Global Illumination to display these I
¥ Materials
Size 1 |
Element 0 | © BackgroundMaterial]
Dynamic Occluded v
BackgroundMaterial @
> Shader | Unlit/Texture v

Whew!! All that work! Those sprites are now two simple, clean, textured meshes! Don’t
you just love how clean and organized your workspace looks? :]

= Hierarchy &~
[create ~| @AT
v @ Game*
Main Camera
WallSpritesMeshed
FloorSpritesMeshed

Where to go from here?

Nice work. Your tiled map is a thing of beauty! You have a sweet background and
prefabs to help you create more levels.

In this chapter, you:
» Set up a tiled map for your level
» Optimized the tiled map by combining multiple sprites into meshes

You've got a running start on your beat ’em up game! Next, you’ll meet and work with
the hero of the game, funky hairdo and all.

er 3: Walk This Way

You’ve set the scene with a sleek mesh for the floor and background. Now you’ll add
some punch to the game by introducing the hero!

You’ve already added sprites to your game and the process for the hero is similar, so
that’s going to be easy enough.

However, a hero doesn’t just stand around like some stiff, stale statue. Heroes must
move, punch and maneuver to inspire the masses and destroy any droids that dare step
in their way.

In this chapter, you’ll add the hero and give him signature moves. Along the way, you’ll
learn about:

Unity’s animation system, Mecanim, and physics engines in general

Moving the hero around the screen and responding to user input

Animating a 2D character

Following a GameObject with a camera

Keeping GameObijects in the scene

By the end of the chapter, you’ll have the hero confidently strutting his stuff!

h raywenderlich.com 70

Walking in style

Before creating your beat ’em-up masterpiece, think through how the hero will move
and some of the other gameplay basics.

In most beat-em-up games, the hero moves horizontally and vertically.

HEALTH

X4 O —

————2

In this style of game, the hero also maintains its size, meaning that the character looks
the same regardless of its distance from you.

T T

DA

Size and projection: A matter of perspective

Unity includes a variety of projection modes that let you control perspective in your
game.

In this section, you’ll go over the basics you need to know to set up the game scene. You
don’t need to do anything other than read and absorb.

Cameras are objects that capture and convert the game world you design to an image
on screen for the player through a process known as projection.

Graphics projection is the process by which three-dimensional data renders to a two-
dimensional screen. The two most common projection modes are orthographic and
perspective.

Perspective shows objects the same way you see them in the real world where distant
objects appear smaller than those that are close. In the below image, you see how the
center-most sprite, which is further away, looks smaller than the left-most sprite.

Orthographic, on the other hand, ignores the distance of objects from the camera.
Objects near and far are the same size at all points along the camera’s view. The image
below shows the same scene rendered with an orthographic perspective.

Which should you choose for PompaDroid? Orthographic projection, of course! He
exists in a flat, narrow world, so keep it simple with othrographic.

On to character movement. If everything looks the same size, how does the player know
whether the hero needs to come closer or move away? How do you show movement
across the scene?

Left-to-right movement is easy to solve. You just move the hero and camera left to right
to create movement.

How about top-to-bottom movement? Moving the camera in and out of the scene might
do it, but you could really mess up gameplay with all that movement. This sounds like a
job for rotation!

Imagine the scene only contains a green box and two sprites at opposite ends, like this:

[[shadea ~Jj2n|[% <) [@lx] | Gizmos-| @A

This is how a camera with no rotation would show the scene:

8lél
€ Game =
Free Aspect " Maximize on Play | Mute audio | Stats | Gizmos ' ™

If you tilted the camera downward by 30 degrees, you’d show the sprites against the
floor, like this:

DO
€ Game =
Free Aspect = Maximize on Play | Mute audio | Stats | Gizmos '~

-

Does the hero look like he shrank to you? Maybe a monster came along and stepped on
him — or, maybe it’s the camera angle messing with things.

The issue is that the camera is looking at the sprite at an angle, just as you told it to do.
Rotating the sprite 30 degrees on the x-axis corrects the problem:

Maximize on Play | Mute audio | Stats | Gizmos '~

Now they look tough — and correctly proportioned.

Note: A 30-degree rotation provides enough tilt to give the 2D world some depth.
You can adjust this to your liking, but this book will stick with 30 degrees.

Turn your attention to Unity’s Physics Engine!
Unity physics comes in two dimensions: 2D and 3D.

Unity has an integrated 3D physics engine name PhysX that you’ll use for this game.
The reason why you’ll use 3D physics is that it allows depth calculation. In contrast, 2D
physics doesn’t calculate depth unless you add additional code.

In short, using 3D physics makes creating a beat-em-up game much easier than
working with 2D physics.

PompaDroid will use simple box colliders to approximate characters in 3D space. Unlike
the sprites used in the game, this box is not rotated.

Everything the hero encounters — including enemy droids — will utilize box colliders.
Boxes require relatively few physics calculations, so you can have an army of enemies
on screen, and the game will still run buttery-smooth on mobile devices.

One more thing to go over before you dig in: unfortunately, the hero must never escape
the screen. Did you see his hair and menacing grimace? It looks like he tangled with a
uranium core or something! Who knows what would happen if he escaped.

You’ll basically imprison him and all his enemies inside a physics tunnel that’ll look
like this:

Don’t sweat the white walls. They’ll be invisible to the camera but not to the physics
engine. The characters will not be allowed to pass through these walls!

K

The life of a hero isn’t an easy one. :]

With all that said, here’s the recipe you’ll follow to add movement to PompaDroid:
» A camera with orthographic projection, rotated by 30 degrees along the x-axis

« Sprites tilted backward 30 degrees to “cancel” the camera’s rotation

» Configuring your game to use Unity’s 3D physics engine to handle collisions

Now you’re to the point where you’ll start doing things, so grab a beverage, get into
your zone and prepare to build!

In this section, you’ll set up the camera and sprites, then implement a state machine to
help with animations. Setting these pieces up next will make your life a little easier.

First, open the Game scene. Look in the Hierarchy for a camera. If you don’t have one,
right-click and select Camera to add one.

Rename Camera to MainCamera, and then go to its transform and set the Position to
(X:10, Y:8.5, Z:-7.6), Rotation to (X:30, Y:0, Z:0) and Scale to (X:1, Y:1, Z:1).
Change its Tag to MainCamera if it is shows up as Untagged.

The coordinates look like magic arbitrary numbers, but they serve a specific purpose.
The x-coordinate affects which part of the map can be seen horizontally. With a rotated
camera, both the y and z-coordinates affect how much of the map can be seen vertically.
As you will see later, the camera position you set represents the ideal view of the map's
starting point.

Note that you rotated the camera 30 degrees downward along the x-axis, as discussed in
the previous section.

Set the Projection to Orthographic and Size to 5.

The camera’s size is half the height of an orthographic camera in world units and
independent of the camera’s aspect ratio. For example, a camera with a size of 5 and
aspect ratio of 4:3 would be 13.33 units wide and 10 units tall, while a 16:9 aspect ratio
would be 17.78 units wide and 10 units tall.

10 units 10 units

4:3 16:9

With that done, you need to work on the sprites’ rotation. Suddenly the hero’s
playground looks a bit wonky.

A

Create a new empty GameObject and name it TileMaps. This will act as the parent of
the background meshes you made in the previous chapter.

Open up the Inspector, and in the transform, set Position to (X:0.5, Y:-0.28, Z:
4.67),Rotation to (X:30,Y:0, Z:0) and Scale to (X:1, Y:1, Z:1).

In the Hierarchy, drag WallSpritesMeshed and FloorSpritesMeshed over TileMaps to
make them its children. Reset the transform for both children.

Now the background meshes should look correct because they’re facing the camera at
the same angle the camera is rotated. Good work!

Maximize on Play | Mute audio | Stats | Gizmos |~

\\3}

What do you think is next? The hero, of course! But before you add controls or the hero,
you’ll create an animation system — it’s a little extra work now that’ll pay off later.

In most games, characters “move” because of various animations, each of which
portrays an action.

Knowing how to run an animation isn’t enough — you also need to know when to play
it. For example, when the hero is going slowly, the game should use a walking
animation. When the player makes him jump, the hero should look like he’s sprung into
action.

There are a few ways to transition between a sprite’s animations, and for this book,
you’ll work with a state machine.

A state machine is an algorithm that tracks the state of a given object and executes
various actions based on its current state. State machines can have only one active state
at any given time but can transition between states based on triggers you define.

To understand this better, imagine the main character and list the things it can do:
e Idle

» Walk

e Punch

Now think about the requirements for each with the assumption — for the sake of
simplicity — that only one activity can happen at once:

» If the state is idle then it can’t walk or punch.
o If the state is walk then it can’t idle or punch.

 If the state is punch then it can’t idle or walk.

P&

idle walk punch

hurt Jdeqd

Your hero will have three states that are under the user’s control. There will also be a
hurt and dead state, but these will be controlled by code.

Import Hero Walk and Idle Sprites.unitypackage from the Unity Packages folder. It
contains the sprites you’ll use to animate walk and idle states. You’ll also see a shadow
sprite for the hero.

You might have noticed the excessive padding on the hero sprite assets — the sprite is
tiny compared to the image size! This is to accommodate all of the hero’s actions.

All images in an animation need to be the same size. When you play an animation, the
game replaces the current sprite with the next, and when they’re all sized the same, you
get a clean effect that works similarly to a flipbook.

In some animations, the object needs to move away from the center of the canvas. For
instance, when the hero jumps to make a kill or falls dead after a run-in with a trap.

There are two things you need to do to work with these kinds of animations:

» Make the canvas bigger, so there’s room to place the sprite at the right spot to
accommodate relative animations.

« Set it so that when the character moves around the screen, such as when the user
presses or taps the movement button, the entire character canvas moves within the
layer.

The imported sprites are set to 32 pixels per unit, and their pivot is at (0.5, 0.23) of
the total image size. You can see it in the Sprite Import Settings.

Pivots are points around which a sprite will rotate and scale and uses normalized
values. The values of 0.5 and 0.23 represent percentages, specifically - 50 percent of the
width from the left, and then 23 percent of the height from the bottom.

© Inspector | Bl o=
hero_idle_00 Import Settings o %,
| Open |
Texture Type [Sprite (2D and uI) &
Texture Shape 2D
Sprite Mode [single &)
Packing Tag
| Pixels Per Unit 32
Mesh Type | Tight
Extrude Edges -_(_j, 1
Pivot [Custom
X 0.5 Y |0.23
Sprite Editor
» Advanced
Wrap Mode [Clamp &
Filter Mode [Point (no filter) ™
Aniso Level O 16
! Anisotropic filtering is enabled for all textures in Quality Settings.

Adding the hero

This game doesn’t deserve its name until it has procured a properly pompadoured
protagonist!

In the Hierarchy, create a new empty GameObiject, reset its Transform, set its Position
to (X:5, Y:0, Z:0) and change its Name to MyHero.

K

Create another empty GameObject and make it MyHero’s child, reset its Transform and
name it HeroAnimator.

In the Hierarchy, create a 2D Object\Sprite. With this, you’re making a new
GameObiject that has a SpriteRenderer component. Name this new GameObject
HeroSprite.

Make HeroSprite a child of HeroAnimator and reset its Transform and set its
Rotation to (X:30, Y:0, Z:0).

Drag the hero_idle_00 sprite from the Assets\Images\Sprites\Hero folder in the
Project view to HeroSprite’s SpriteRenderer Sprite property.

IR [ey pvot | ®Local | (> [11 P [@colab -] [&] [Account -] [Lavers -] [Lavour -]
= Hierarchy = | © Inspector & =
| Create - | (oAl HeroSprite [] static ¥
v € Game* = -
MainCamera Tag | Untagged 4| Layer| Default i)
» TileMaps ¥ .~ Transform e
¥ MyHero Position X 0 Y0 'zZo |
¥ HeroAnimator Rotation x 30 Y0 'zlo |
___ HeroSprite | Scale x[1 Y1 lz[x]
v -l ¥ Sprite Renderer i
Sprite [z hero_idle_00 |
Color | I/
Flip Ox Oy
Material | @ Sprites-Default | o
Draw Mode [Simple ™
Sorting Layer | Default ™
Order in Layer 0 |
Mask Interaction [None]
Sprites-Default @ *
» Shader | Sprites/Default
[Add Component]

Hero created — well, at least in the sprite is set up. There’s still a ton of (fun) work
ahead!

Press the Play button. Notice that the pompadoured guy is as about as lifelike as a
painted wall. He’s an extreme wallflower because you haven’t given him the gift of
motion, aka animation.

Click Play again to stop playback.

Animating the hero

In the Project view, open the Assets folder, create a new folder inside of it and name it
Animation. You’ll save all animation for the game in here.

Double-click the Animation folder, make a new folder then name it Hero. This is for
the hero’s animations.

K

@1 Project . O console

] Create 'l

v 7 Favorites
@AII Materials
@AII Models
@AII Prefabs

@AII Scripts

Vi Assets
¥ & Animation

Now you’re in the part where you add animation clip assets. Open the Animation\Hero
folder and right-click to toggle a menu.

1. Create an Animator Controller and name it hero_anim_controller.

2. Create two Animation assets and name them hero_idle_anim and

h i
ero_walk_anim.
Folder
C# Script
Javascript
Editor Test C# Script
Shader >
Scene
Prefab
| Audio Mixer
:
|1 Reveal in Finder Material
Open Lens Flare
Delete Render Texture

Lightmap Parameters

Sprites
Import New Asset...

Import Package »
Export Package...

Animator Controller
Animation
Animator Override Cont|
Avatar Mask

Select Dependencies

Refresh %R Physic Material)
Physics2D Material

Reimport
Reimport All GUI Skin

Custom Font

Shader Variant Collection
Open C# Project Legacy »

You made three new assets: an animator controller asset and two animation clips. All
three are integral parts of Unity’s animation system — Mecanim.

>

g

o

g

hero_anim_controll... hero_idle_anim hero_walk_anim

Mecanim in a nutshell

Mecanim is the system that handles animations in Unity. It uses animator controllers
that contain state machines to handle various animation states.

Each state contains an animation clip that defines which animation will play once a
certain state is reached. When animations finish or other conditions are met, you can
implement transitions to move to other states.

Animator controllers handle the state, mix and sequence of animations. They can be
used by GameObjects through the Animator component.

Animator controllers can be edited in the Animator view, which is accessible from the
top menu bar via Window\Animator. Open it up and select hero_anim_controller in
the Project view so that there’s something in the Animator view to look at while you
read on.

The Animator view has two main sections: Layers and Parameters and Layout.

L0

Lavers (| Paramrs | @
+

The layers and parameters pane contains two tabs: the animation Layers tab and the

events Parameters tab.
‘s Animator
‘Parameters I »
i

In Layers you employ various state machines to handle multiple layers of animation.
One way you’d use them is for making multiple body parts move at the same time. It
allows a multi-layered approach that’s essential when making complex 3D animations.

All that said, PompaDroid is less complex; you’ll stick to the default layer, aptly named
Base Layer.

[y [mes] @
(oeName) +

In Parameters, you find variables — aka parameters — that affect the animation. Later
you will create a Boolean named IsAlive that enables the Animator controller to
transition to a death animation when it’s set to false. These parameters are also
accessible outside the Animator controller via other components and scripts.

Turn your attention to the layout area on the right side of the Animator view. Although
you won’t see them at this point, just know that each Animator contains an Entry and
an Exit node.

1. The Entry node defines which node is called first. The Exit node is used when the
animation finishes.

2. Inthis case, Entry calls the default state which is represented as the Alive node.

Base Layer Auto Live Link

Nodes are connected by State Transitions that are depicted as arrows in this image:

Base Layer

Auto Live Link

Animation/Hero/hero_anim_controller.controller

Each transition has many parameters that can modify what happens between states. To
see these parameters, you’d select a transition and check the Inspector:

[0 inspector]

& Alive -> Death @ = %
—

1 AnimatorTransitionBase
Transitions Solo Mute
1 —
™ | @
W= Alive -> Death
2 Has Exit Time ™
¥ Settings
3 Exit Time 0.9 |

4 Fixed Duration
5 Transition Duratior 0.1 |
B Transition Offset [0 |
7 Interruption Source None &l
Ordered Interruptic
Cannot preview transition: source state does no

Conditions
= [IsAlive || [false +)
Fs\ | + -

Transition name: The name of this transition. You use this when checking
animation states.

Has Exit Time: Determines whether this transition’s condition can take effect any
time or only during the state’s exit time. Check the box to limit the animation to an
exit time of your choosing.

Exit Time: Sets the time, in a normalized value, that must pass before the
transition takes effect — 0.25 would be 25 percent. Check Has Exit Time to enable
this parameter.

Fixed Duration: Toggles between using seconds or normalized time to set a
transition’s duration.

Transition Duration: Defines how long a transition should last. You also see this
visualized in the transition graph.

Transition Offset: Sets how long the next state’s animation should wait before
playing. With normalized values, 0.1 means the next animation would start playing
at 10 percent of its timeline. In this book, the offset value is always zero.

Interruption Source: Sets if and how the transition may be interrupted by other
transitions.

Conditions: Here you set the deciding factors that determine when to transition to
another node. In the image above, when IsAlive is set to false, the Animator
transitions from the Alive state to the Death state.

Animation states also have properties that define how they handle animation:

1.

K

 © Inspector | &=
- idle @ = %
Tag
1 Motion {2 hero_idle_anim | @
2 Speed 1
Multiplier ~+ []Parameter
Normalized Time [] Parameter
Mirror J [_] Parameter
3 Cycle Offset 0 [Parameter
Foot IK LJ
4 Write Defaults [
Transitions Solo Mute
List is Empty

Motion: The animation clip used by this state.

2. Speed: The speed multiplier for the animation; it’s 1 by default.
3. Cycle Offset: The number of frames by which the loop animation should offset.

4. Write Defaults: All unanimated properties stay in their default states when this is
enabled. For example, if you only animate the X position, the Y and Z position will
stay 0.

5. Transitions: A list of all transitions connected to this animation state.

Each animation state has an animation clip in its Motion parameter. Clips are the heart
and soul of an animation: They contain data necessary to carry out an animation.

Animation clips are values or properties of components that change over a certain
period of time. To visualize the concept, consider the image below, which breaks down
hero_walk_anim:

® Animation
[o |

LW [o J[®e|0e] | [0

You see the hero’s individual “walk” sprites. Each arrow points to the corresponding
frame on the timeline — these are keyframes, which are snapshots of the component’s
values. The Sprite property, noted as 1, changes with each frame.

Playing the clip simply means it cycles through the keyframes and changes the
HeroSprite’s sprite value, creating an illusion of movement.

Animation clips can be viewed and edited in the Animation window, located under
Window\Animation in the file menu. Drag the Animation window to Unity now, but
remember, you won’t see anything in there just yet — you’re still just reading.

Window | Help
Next Window Ctrl+Tab
Previous Window Ctrl+Shift+Tab
Layouts »
Services Ctrl+0
Scene Ctrl+1
Game Ctrl+2
Inspector Ctrl+3
Hierarchy Ctrl+4
Project Ctrl+5
I Animation Ctrl+6 I
Profiler Ctrl+7

The Animation view has two parts: the Animated Properties List on the left and the
Animation timeline on the right.

The Animated Properties List contains the properties and public variables that your
animation modifies. If the property or member variable shows in the Inspector, then
you can animate it!

Use the top-left drop-down, highlighted as 1, to switch between animation clips
attached to the same Animator.

© Animation
preview | @ [14 | 14 | > | »1 o | (| 0:Ho 0:05 0:10 0:15 0:20 0:25 0:30 0:35
hero_idle_anim /-\ #ISamples 60]<>+| U+
1
» [ESprite : Sp) & S

[Add Property]

v
| Dopesheet Curves 4 »

The right is the Animation timeline. It comprises frames represented by vertical bars.

Beat ’Em Up Game Starter Kit Chapter 3: Walk This Way

The diamond icon denotes keyframes in the timeline.

If Mecanim just considered the keyframes, then animations would look cheap and
choppy. Hence, the system interpolates between keyframes to calculate values for each
animation frame.

However, PompaDroid uses frame-by-frame animation for the characters, so
interpolation is largely unnecessary.

[preview | ® [1ea | W | > [M i [] [0 || o
[[hero_idle_anim ¢ Samples 60 || ©4 | O [l \

\

i

The Animation view lets you record and playback an animation — controls are in the
upper-left corner.

h raywenderlich.com 91

Recording is very simple: click the record button and change the properties that you
want to animate. Changing any property of the selected Animator or its children will
create a keyframe at the current value on the timeline. You’ll cover this a bit later.

The Animation view has two view modes that show in the bottom-right of the
properties pane: Dope Sheet and Curves.

» Dope Sheet: In this mode, you can view multiple properties for a specific animation
and adjust keyframe values very easily.

e Curves: This provides a resizable graph where you can inspect values for animated
properties. It lets you exert total control over animations. There is a cost though: too
much control can make it hard to show all the data on screen smoothly, i.e.,
gameplay can suffer.

You’ll use Dope Sheet mode for PompaDroid

Congratulations! You’ve just finished reading Mecanim in a nutshell, and now you’re
equipped with the knowledge to make the hero walk and idle in style! Time to get to
work.

R R R K R K
Py A X XV KX

The hero comes with six idle sprites and eight walking sprites. Notice that perfect
pompadour is never out of place. These sprites will play sequentially and loop to create
the effect of movement.

I bet you’re already thinking about how to set them up, so let’s get to it!

Select HeroAnimator, which is a child of MyHero. Click Add Component then
Miscellaneous/Animator.

Drag hero_anim_controller from the Assets/Animation/Hero folder to the
Controller property of the Animator component.

K

['HeroAnimator | CJstatic v
Tag | Untagged 4 | Layer| Default |
¥ .~ Transform o &%
Position x[0 lyo zlo]
Rotation X [0]Y IO] 74 [0]
Scale x[1 Y11 |z]
[T -t
Controller td hero_anim_controller o
Avatar None (Avatar) [0}
Apply Root Motion []
Update Mode | Normal ™
Culling Mode | Always Ani &l
Clip Count: 2
Curves Pos: 0 Quat: 0 Euler: 0 Scale: 0 Muscles: 0
Generic: 0 PPtr: 2
Curves Count: 2 Constant: 0 (0.0%) Dense: 0 (0.0%)
Stream: 2 (100.0%)

With that, you’ve set up the Animator. Now you’ll add the animation itself.

Open the Animator window, navigate to Assets/Animation/Hero and select
hero_anim_controller.

The Animator window should reflect the animation state machine for
hero_anim_controller. Verify this by checking the name on the bottom-right of the
panel.

22 Animator
| Layers H Parameters I » Base Layer Auto Live Link

+

Animation /Hero /hero_anim_controller.controller

The state machine is empty. To add an Animation state, drag hero_idle_anim to the
Animator window, like this:

2 Animator

| Layers || Parameters | ® | Base Layer

Any
List is Empty

Animation/Hero/hero_anim_controller.controller|

| T Create™™] = T

VQFIvorims Assets » Animation » Hero
@All Materials
©) All Models

@AII Prefabs
(©1 All Scripts
VS Assets

¥ & Animation

hero_anim_controll... hero_idle_anim hero_walk_anim

This creates a new Animation State named hero_idle_anim with a motion parameter
that uses the hero_idle_anim clip. As the first Animation state for this controller, it’s
also the default, as indicated by the yellow color.

Select the hero_idle_anim state in the Animator view and rename it idle in the
Inspector.
2 Animator

l Layers H Parameters I k-] Base Layer Auto Live Link
+

Animation/Hero/hero_anim_controller.controller

The idle state is now part of the hero animation state machine. Now you’re ready to add
an animation to hero_idle_anim — when idle, the pompadoured protagonist will
bounce slightly to show that he’s ready for action.

K

Beat ’Em Up Game Starter Kit Chapter 3: Walk This Way

Select HeroAnimator in the Hierarchy. Open the Animation view by going to
Window\Animation in the menu. Because HeroAnimator is an Animator component,
you can edit the clips to be used by the Animator state machine in the Animation view.

| = Hierarchy | @® Animation

I ~Sprite : Sprite (Missing!)

HeroAnimator

Select hero_idle_anim in the top-left drop-down of the Animation view.

Click Add Property on the Animated Properties List. Select
HeroSprite\SpriteRenderer and click + to the right of Sprite. You’ve just added the
HeroSprite: Sprite property to the Animation timeline.

@® Animation

=
=
<

2.
id
=
=
2

2.
=g
==
o

.;l

In the Project window, go into Sprites\Hero and select hero_idle_00-hero_idle_05.
Drag them all to the first frame of the HeroSprite: Sprite parameter in the Animation
timeline.

h raywenderlich.com 95

Beat ’Em Up Game Starter Kit Chapter 3: Walk This Way

O 4| S E S [earvor | Slocal

HeroAnimator

7 Assets » Images » Sprits

The timeline should show one keyframe per sprite, similarly to the image below:

- m . el
. (¥ [HeroSprite | O static v A
P Tag|Untagged ¢ Layer|Defaut :]

Scrub through the timeline and check if the sprite animation is correct. You should have
six frames, with the first being hero_idle_00 and the last being hero_idle_05. If there’s
an extra keyframe at the end of the timeline, right-click it and select Delete Key.

When you select any frame in the timeline, Unity will enter preview mode. This mode is
easy to distinguish. Note how the Preview button in the Animation playback is selected
and the timeline is blue.

h raywenderlich.com 96

Beat ’Em Up Game Starter Kit Chapter 3: Walk This Way

= i s
¥ [HeroSprite | [static ¥ F
Tag[Unagged ¢ Layer|Defaut :]

Changes to values that are being animated are not saved. Unity highlights these
properties in blue. Of course, that means any values that are not highlighted will be
saved — be careful!

If you want to modify the animation you are creating, click the Record button. This will
change the Animation window so that it has a red timeline, and the record button
shows as selected.

' (¥ [HeroSprite | [static ¥ F
[_ Tag(Unagged ¢] Layer|Defaut ¢]

=

Unity records and keyframes any values that change.

To disable record mode, just click the Record button in the playback tools.

h raywenderlich.com 97

By the way, you just finished your first animation! Press Play in the Animation view to
see it. It’ll play the entire sprite animation in the Scene view. Watch the red scrubber
move across the frames to see which one is currently showing.

(® Animation
| Preview | @ | 44 | 14 Moo]
I hero_idle_anim Samples [GO_H Lo I U+ I

b [“1HeroSprite : Sprite =

[Add Property]

The hero is probably moving a bit fast for the effect to look right. Adjust this by setting
Samples value to 12, which will adjust the selected animation’s frames per second
(FPS). The hero's idle sprites were originally designed for 12 FPS, but you can play with
this value if you want.

(© Animation

| Preview | @ |44 | 1| > | M| DM

Ihero_ldlganlm Samples I- I
Add Property

Make sure you stop record mode before proceeding.

Press the Play button in the toolbar. The hero bobs left and right but stops abruptly.
That’s not going to cut it during gameplay.

Select hero_idle_anim animation in the Project window and check Loop Time in the
Inspector.

| © Inspector | =

hero_idle_anim @ = %
E [Open |
Length 0.500 12 FPS
I Loop Time lz I
Loop Pose L
Cycle Offset 0

Curves Pos: 0 Quaternion: 0 Euler: 0 Scale: 0 Muscles: 0
Generic: 0 PPtr: 1

Curves Total: 1, Constant: 0 (0.0%) Dense: 0 (0.0%)
Stream: 1 (100.0%)

2.2 KB

Play the game again. Congratulations! He’s no longer some dull, static image.

Adding input

There are more animations to add, but you’ll get to those later. Right now, it’s time to
give the player control of the character.

PompaDroid requires the following inputs:
e A button to punch

* A button to jump

» A joystick for movement

Unity has an Input class that interprets input from various devices, including keyboard
and touch. Its values are configured in the Input Manager.

Go to Edit\Project Settings\Input to open the Input Manager in the Inspector.

Beat ’Em Up Game Starter Kit Chapter 3: Walk This Way

| © Inspector
InputManager I %
|

Expand Axes to see all the inputs currently handled by the engine. Set Size to 2 to
delete all the other unneeded axes — you’ll only need Horizontal and Vertical. Expand
Horizontal to show all its values, then clear the values for Alt Negative Button and
Alt Positive Button. Do the same thing for the Vertical axis.

Now, add four new elements by setting the Size to 6 and pressing Enter. This will
duplicate the vertical input four times:

© Inspector

@ InputManager

o Name the first duplicate Attack. Clear all values with Button in their name. Set
Positive Button to a.

u raywenderlich.com 100

* Name the second duplicate Jump. Clear all values with Button in their name. Set
Positive Button to s.

» Name the third duplicate Submit. Clear all values with Button in their name. Set
Positive Button to a.

» Name the fourth duplicate Cancel. Clear all values with Button in their name. Set
Positive Button to s.

Submit and Cancel are necessary for the user interface (UI). If you don’t declare these,
then Unity will throw a bunch of warnings.

And with that, you’ve built out the input controls necessary to make PompaDroid work.
On to getting the guy moving.

To implement movement, the hero needs three basic components:
1. Hero script: A custom script to handle the hero, including movement.

2. Box Collider: A secondary GameObject that approximates the hero’s body in the
physics world. It detects collisions with other entities such as walls, floors, enemies
and punches.

3. ARigidbody: Allows the associated GameObiject to be controlled by the physics
engine. Working in conjunction with the attached box collider, they let the physics
engine determine the result when forces are applied to it.

Navigate to the Assets\Scripts folder in the Project view and right-click in the empty
space then select Create\C# Script and name it Hero.

@3 Project |
Create ~ Q | 4 | S
A AN, Favorites Assets » Scripts »
(O All Materials
©L All Models
(©1 All Prefabs

©1 All Scripts i C # C # C #

v &5 Assets
¥ &l Animation
ﬁ Hero Editor GridSnapper Hero MainMenu

| &
4
[l

v &5 Images
(&5 Background
&5 MainMenu
v &3l Sprites
& Hero
&3 Misc
v G Prefabs
& Map
[l Scenes
™= Scripts

Select MyHero in the Hierarchy and drag the Hero script to it. Click Add Component,
select Physics then add a Box Collider. Repeat to add a Rigidbody and under its
Constraints, find Freeze Rotation and check X, Y, and Z to disable rotation on the
hero’s Transform.

MyHero should look like this now:

© Inspector
¥ MyHero | [Static ¥
Tag [untagged m Layer[Default ™
b~ Transform o %
v o v Hero (Script) U8
Script + Hero (o]
v i ¥ Box Collider i
Edit Collider
Is Trigger J
Material |None (Physic Material) o
Center X 0 Yo 'z o |
Size X[1 ¥ |1 |Z[1 |
v .. Rigidbody @ =
Mass (1 |
Drag 0 |
Angular Drag 10.05 |
Use Gravity 4
Is Kinematic -
Interpolate [None ™
Collision Detection | Discrete s]
¥ Constraints
Freeze Position L IX [JY [JZ
Freeze Rotation WX VY V7

Look at the Scene view. You’ll see the green box collider, but it’s at the feet of the hero
and does a poor job of approximating his body:

Gizmos ~| (arall

Note: If you're seeing a 2D square instead of a 3D cube, turn on 3D mode by
clicking on 2D in the upper left corner of the Scene view.

Correct this by setting the Center value of MyHero’s Box Collider to (X:0, Y:1.2, Z:
0) and set the Size to (X:1, Y:2.4, Z:0.5). Now he should be mostly inside the green
cube.

Scene
Shaded

Press the Play button and test the game. Whoops? He’s dropping down through the
floor. What a horrible fate!

It’s happening because there is no “solid” floor beneath his feet, so he’ll be pulled
downwards by gravity for eternity — or at least until you press play again.

Tunnel vision

Although the power to walk through walls and floors can be a useful trait for a
superhero, it does a pompadoured protagonist no good. He needs a floor to walk on and
walls to keep him in play. You’ll implement more Box Colliders to ultimately solve the
problems, but first, a little background reconstruction is in order.

In the Hierarchy, right-click and Create Empty. Reset its Transform and name it
Mapl. It’ll serve as the root of all the level objects.

Make TileMaps a child of Map1 and set its Position to (X:0.5, Y:-0.28, Z:4.67),
Rotation to (X:30, Y:0, Z:0) and Scale to (X:1, Y:1, Z:1).If, for some reason, the
hero isn’t standing on the floor, play around with the Z position of TileMaps until you
find the right value.

K

Create a new empty GameObject and name it Colliders. Make it a child of Map1 and
reset its Transform. This will serve as the parent of all the colliders in this level. You
should have the same hierarchy as this:

¥ Mapl
> TileMaps
Colliders

Now create the box colliders for the floor and walls:

» Right-click and select 3D Object\Cube to create a cube and name it Floor. Make it a
child of Colliders. Set its Position to (X:50, Y:-0.5, Z:0),Rotationto (X:0, Y:0,
Z:0) and Scale to (X:100, Y:1.0, Z:10).

» Create another cube and name it Back. Make it a child of Colliders. Set its Position
to (X:50, Y:4.5, Z:3.5),Rotationto (X:0, Y:0, Z:0) and Scale to (X:100, Y:10,
Z:1). This cube will be the back wall of the map — the side furthest from the camera.

e (Create a cube and name it Front. Make it a child of Colliders. Set its Position to (X:
50, Y:4.5, Z:-3.5),Rotationto (X:0, Y:0, Z:0)and Scale to (X:100, Y:10, Z:1).
This defines the front wall closer to the camera.

» Create the last cube and name it LeftEdge. Make it a child of Colliders. Set its
Position to (X:-0.5, Y:4.5, Z:0),Rotation to (X:0, Y:90, Z:0) and Scale to (X:
8, Y:10, Z:1).

Your Map1 hierarchy should now look this:

¥ Mapl
> TileMaps
¥ Colliders
Floor
Back
Front
LeftEdge

Four boxes now surround your hero, hiding him from the camera.

Scene | 002

Shaded -||20 || | <) | @I~ Gizmos ~| (@Al

Disable all the Mesh Renderers of the newly created cubes to be able to see him again.

Select the Floor, Back, Front and LeftEdge and uncheck the checkbox on their Mesh
Renderer components.

N ll J T l Y I = {1 J
¥ Mapl
¥ Tile Maps v esh Renderer =
WallSpritesMeshed ¥ Lighting
FloorSpritesMeshed Light Probes [Blend Probes]
¥ Colliders Reflection Probes | Blend Probes]

Floor

Anchor Override None (Transform) |
Back

Cast Shadows [On
Receive Shadows
Motion Vectors | Per Object Motion &
Lightmap Static [|

“wl QO ||

Front
Left Edge

L/

| Lightmapping settings are currently |

Select Colliders and look at the Scene view. The result should be something like this:

Scene

Shaded

The Box Colliders show as green outlines. Now that you’ve set the floor, press Play and
see what happens. Now he’s on — not in — the ground because there’s a collider
beneath him:

*

Yet something still seems a little off! The character appears to be floating ever so
slightly over the floor instead of standing on it. A shadow beneath his feet will make
him look like he’s part of the world.

\

K

The shadow can be a black circle sprite that needs to be drawn below the hero:

—
b _ad

No fancy effects needed; a plain and simple shadow is sufficient.

Go to the Hierarchy and right-click in empty space then select Create\2D
Object\Sprite to make a new sprite game object. Make it a child of MyHero and rename
it ShadowCharacter.

Set its Sprite to the shadow_character sprite located in Assets\Images\Sprites\Misc
in the Project view. Set its Transform Position to (X:0, Y:0, Z:0.1), Rotation to (X:
30, Y:0, Z:0) and Scale to (X:1, Y:1, Z:1).

Much better! The hero is now firmly planted on the ground — amazing what a little
shadow will do for the scene.

You’re making great progress. You just finished up adding physics, which is a
prerequisite for making the player move.

Moving the hero around, part 2

In this section, you’ll edit the Hero script to make him walk like he’s never walked
before!

K

Open the Hero script and remove the Start() and Update() methods that are added by
default. Add the following variables to the Hero class:

//1

public Animator baseAnim;

public Rigidbody body;

public SpriteRenderer shadowSprite;

//2
public float speed = 2;
public float walkSpeed = 2;

//3

Vector3 currentDir;

bool isFacinglLeft;

protected Vector3 frontVector;

1. The baseAnim variable references the Animator you created for the hero’s
animation. The body refers to the Rigidbody that will handle the physics of the
Hero, and shadowSprite references the shadow beneath the hero’s feet.

2. walkSpeed defines how fast the hero moves around the map and speed is the current
speed; walkSpeed is assigned to the speed value when the hero is walking.

3. currentDir contains the actual direction the hero will be moving. isFacingLeft is
true whenever the hero faces left and false when he faces right. Lastly, the
frontVector contains the direction the hero is facing. Its value should be (X:-1, Y:
0, Z:0) when the hero faces left and (X:1, Y:0, Z:0) when he’s facing right.

Now for the methods of the Hero script. These are the blocks of code that make the hero
actually do stuff. First, add the following method below the variable declarations.

void Update() {

//1

float h = Input.GetAxisRaw ("Horizontal");
float v = Input.GetAxisRaw ("Vertical");
//2

currentDir = new Vector3(h, 0, v);
currentDir.Normalize();

//3

if ((v==08&% h ==10)) {
Stop();

} else if ((v '= 0 || h '=0)) {

. Walk();

s

K

The Update() method is native to Unity’s MonoBehaviour lifecycle. It is called once
every frame. Here, you do the following:

1. You check for user input by storing the value of the horizontal input in the h
variable, and the vertical input in the v variable.

2. You store the h and v values to the currentDir Vector3. Horizontal input is
translated to the hero’s x-axis movement while vertical input is translated to
movement along the z-axis.

3. Finally, you check for horizontal or vertical input. If no input is found, then you call
Stop() — a method you will write later to make the hero stop. When either of the
two inputs is found, then you call walk() — a method you will also write later to get
the hero moving.

You're not done yet. At this point, your code won't compile because you haven't written
the Stop() and Walk() methods yet. Still in the Hero script, add the following methods
right below Update().

//1
public void Stop() {
speed = 0;

baseAnim.SetFloat('"Speed", speed);

//2
public void Walk() {
speed = walkSpeed;
. baseAnim.SetFloat("Speed", speed);

These two methods allow you to directly control the speed of the hero. Remember that
both these methods are called in Update() and are mutually exclusive depending on the
presence of any user input related to movement.

1. InStop(),you set the hero's speed to @ to stop him from moving. You also set his
Animator's Speed parameter to @ to ensure that the hero returns to the idle
animation.

2. You do the opposite in Walk(). First, you copy the value of walkSpeed to speed to
make the hero move. Likewise, you also set its Animator's Speed parameter to the
same value as speed to make his walk animation play later.

The hero won't be able to move just yet. All you've really done at this point is to change
the hero's speed. To move the hero, you need to get his Rigidbody to move. Still in the
Hero script, add the following methods.

K

//1
void FixedUpdate() {
Vector3 moveVector = currentDir * speed;
body.MovePosition (transform.position + moveVector x
Time.fixedDeltaTime);
baseAnim.SetFloat ('Speed", moveVector.magnitude);

//2
if (moveVector != Vector3.zero) {
if (moveVector.x '= @) {
isFacingLeft = moveVector.x < 0;

FlipSprite (isFacingLeft);
}

//3
public void FlipSprite(bool isFacingLeft) {
if (isFacinglLeft) {
frontVector = new Vector3(-1, 0, 0);
transform. localScale = new Vector3(-1, 1, 1);
} else {
frontVector = new Vector3(1, 0, 0);
transform. localScale = new Vector3(1, 1, 1);
}
}

FixedUpdate() is another native Unity method similar to Update(). It is called once
every fixed framerate frame at precise time intervals, while Update() is called once
every actual framefrate frame at varying time intervals. With that said, let’s step
through this last code block one section at a time:

1.

In FixedUpdate(), you calculate how much the hero’s Rigidbody should move by
multiplying his currentDir with his speed. You then call body.MovePosition() to
position the hero’s Rigidbody according to the moveFactor. The hero’s Animator’s
Speed parameter is also updated.

Still in FixedUpdate(), you check whether the hero is facing right or left when he is
moving — or in code lingo, when moveVector is not zero. You flip the hero’s
GameObiject accordingly using the FlipSprite() method.

This method simply flips MyHero. If the hero is moving to the left, FlipSprite flips
the object horizontally by setting its Transform Scale to (X:-1, Y:1, Z:1),
otherwise it makes the hero face right by scaling it to (X:1, Y:1, z:1). The
frontVector variable is also updated in this method, which will come in handy in
the future.

Note: To do physics calculations as accurately as possible, Unity needs a fixed
time interval between frames, so any physics-related code — especially those
related to Rigidbody — should be in FixedUpdate() instead of Update(). A higher
or lower FPS would result to shorter or longer time intervals between calls to
Update() and this can cause unstable physics calculations.

Whew, that’s a lot of code! You still need to link the variables in the Inspector for it to
work though.

Save the Hero script and return to Unity. In the Hierarchy, select MyHero. Drag
HeroAnimator to the Base Anim parameter of the Hero component to assign the
animator.

Drag MyHero to the Body parameter of the Hero component to make sure the script
has access to the hero’s Rigidbody for movement.

Finally, drag ShadowCharacter to the Shadow Sprite parameter of the Hero
component to link the shadow.

*= Hierarchy | & -=| © Inspector | a .=
-| (@Al ‘ -
=+ . -y ¥ [MyHero [Static ¥
v € Game* =l ¥
i ==—Fag Untagged 4 | Layer| Default
s .

|
b~ Transfor @ ' %
-

% HeroAnimator TE v— ero (Script) \
____HeroSprite Script N o]
. MaShladowCharacter | ~— Base Anim :: Hero&mator (Anit ©
P k} A MyHero (Rigidbody] ©
Shadow Sprite °'ShadowCharacter (¢ ©

Speed

Walk Speed 2
» i ¥ Box Collider &,
b % Rigidbody B,

268
— 1|8l

[Add Component

Press the Play button and watch what happens.

Pressing the Arrow keys on your keyboard moves the Hero around! But what in the
heck is he doing? Is that some kind of new dance move — the pompadour pop, perhaps?
Whatever it is, it sure isn’t walking.

K

Beat ’Em Up Game Starter Kit Chapter 3: Walk This Way

He’s sliding around like that because HeroAnimator only plays hero_idle_anim. Take
note of this message in the console:

When the script detects input, the physics pushes the hero object around the map,
exactly as you programmed it to do. It also notifies the Animator about the Speed of
the movement but the Animator clearly doesn’t know that the hero has other moves.

Note: You could have added the other animations earlier, along with the idle
animation, but then you’d have missed out on this unforgettable learning
experience!

Creating a state machine

Now you can see where the walking animation comes into play. You’ll spend the rest of
this section doing prework for implementing the walk animation: creating a state
machine.

Select HeroAnimator and open the Animator view. Now select the Parameters tab in
the left pane of the Animator window. Click the + button at the top-right, select Float
and name the parameter Speed.

2 Animator

| Layers || par s | ® Base Layer
(orName)
List is Empty Float
Int
Bool

Trigger

You just created a parameter that is accessible by script and has the power to control

h raywenderlich.com 112

which animation plays.

#8 Animator
l Layers “ Parameters I
(orName

\J
+ 9

Create a new empty Animation State by right-clicking somewhere in the Layout area
of the Animator window and selecting Create State\Empty.

Create State
Create Sub-State Machine
From New Blend Tree

Copy current StateMachine

Select the new animation state and name it walk. Drag hero_walk_anim, which is
located in the Assets/Animation/Hero folder, to the Motion field.

"Q ‘walk @ 3 %
~ Tag | |
Motion I hero_walk_anim o
Speed 1
Multiplier [_' [_]Parameter
Mirror] []Parameter
Cycle Offset [0 [Jparameter
Foot IK]
Write Defaults M
Transitions Solo Mute
List is Empty
‘ =

In the Animator Layout, right-click the idle animation, click Make Transition and
select the walk state. This will create a transition from the idle to the walk state.

— - " Make Transition

Copy
Create new BlendTree in State
Delete

Select the transition arrow from idle to walk state and configure the transition in the
Inspector:

Uncheck Has Exit Time then expand Settings and uncheck Fixed Duration. Set
Transition Duration to 0.

Click the + button at the bottom of the Conditions list. Click the Parameter drop-
down and set Speed as the parameter to be evaluated. Set the condition to Greater
with a value of 0.01.

[@mepecer]
“= jdle -> walk o

W 1 AnimatorTransitionBase

Transitions Solo Mute
™ @ #*

== dle -> walk

Has Exit Time @

¥ Settings
Exit Time 0.5
Fixed Duration 'ﬁ_
Transition Duration (3§ 0 |
Transition Offset 0
Interruption Source | None 4]
Ordered Interruption

G):00 0:05 4g

Conditions

= [Speed |7 (Greawr___s)[001 |

You’ve created a new condition: when the animator is in idle state and Speed is greater
than 0.01, it will transition to the walk state.

K

Adding the walk to idle transition is the last thing to do in the Animator view, at least
for this section:

Right-click the walk animation, click Make Transition and select the idle state. This
will create a transition from the walk to the idle state.

: Make Transition

Set as Layer Default State
Copy
Create new BlendTree in State

Delete

Next, select the transition arrow from walk to idle, and in the Inspector:

Uncheck Has Exit Time and Fixed Duration. Set Transition Duration to 0. Add a new
Condition by clicking the + button. Set the parameter to Speed and set the condition
to Less with a value of 0.01.

- @

W= idle -> walk

Has Exit Time]|

¥ Settings
Exit Time 0.5
Fixed Duration F‘I
Transition Duratiof 0 F
Transition Offset 0
Interruption Source None &l

Ordered Interruptic
)00 0:05 - 0

Conditions
— [Speed l;l | Greater $ | l0.0l I
4+ -

The state machine is done! In the next part, you’re going to make the walk animation.

K

Beat ’Em Up Game Starter Kit Chapter 3: Walk This Way

The walk animation

Select HeroSprite in the Hierarchy. Open the Animation view. Change the selected
animation in the top-left drop-down to hero_walk_anim.

(D Animation
hero_idle_anim M| 0

r -
v hero_walk_anim | samptes [60 1| <4 | D+ ||

Create New Clip... Property

Click the Add Property button on the Animation Property view. Select HeroSprite >
SpriteRenderer and click the + icon on the right side of the Sprite field. This will add
the HeroSprite : Sprite property to the Animation timeline.

@® Animation

Select all the walk sprites — from hero_walk_00-hero_walk_07 in the
Images\Sprites\Hero and drag them to the newly created HeroSprite: Sprite
parameter in the timeline. As it did when you made the idle state, Unity should add a
keyframe per sprite in the timeline.

h raywenderlich.com 116

Beat ’Em Up Game Starter Kit Chapter 3: Walk This Way

| = Hierarchy |

HeroAnimator |

| oDopesheet | cungf ||

[Bm%) | & | ||
Create ~ s *

7 i Assets » Images » Sprites » Hero

If there’s a keyframe at 1:00 then delete it by right-clicking and selecting Delete Key.
Also, set the Samples value to 12 like you did with the idle animation.

Scrub through the timeline to make sure the sprite animation is correct. You should
have eight frames, with the first frame being hero_walk_00 as the HeroSprite: Sprite
value and the last being hero_walk_07.

@® Animation | © Inspector | 9
e | @ |44 14| > | D ; \

S Ll T —=E A
Tag|Untagged #| Layer|Defaur ¢

Remember to enable Loop Time in the hero_walk_anim asset so the animation plays
continuously!

Press the Play button again and move the hero around using the arrow keys. Look at
the confident strut! When you stop giving input, the game transitions him back to the
idle state.

h raywenderlich.com 117

Congratulations, You now have a fully functional character walking around! Now try
this: walk your green pompadoured self to the edge of the visible screen and keep

going.
He struts right off the screen! The issue is not with the hero — it’s that the camera

doesn’t follow him. You’ll write a script to fix the issue that gives him a virtual personal
camera crew.

Camera controls

In this section, you’ll create a CameraBounds class to keep the hero in view.

Although the camera needs to follow and keep him at the center of the screen, there are
times when you need it to be static. For example, when he reaches an edge of the map.
If the camera doesn’t take these exceptions into account, this could happen:

= Q\\

The camera shows the edge of the map because its view, which is depicted by the red
rectangle in the next screenshot below, extends past the edge of the background and
reveals empty space.

=
[shadea. -J[oo) [|8l |cEmes-|@Ar]

7
N
AN

The camera needs to stop moving towards an edge when it’s near one. Here’s a diagram
to illustrate further:

VA

The green line represents the edge of the map as far as the camera is concerned. Similar
to a collider around a sprite, the line isn’t the actual edge of the map . It’s offset a bit
because the game needs space to animate the hero walking into the part of the map
that’s out of frame.

K

The camera shouldn’t continue when its view box or frustum (depicted in red) hits this
virtual edge.

To set this up, you need the value that equals 50 percent of the width of the camera’s
view, which is shown above in light blue. You’ll use that value to calculate the point
where the camera should stop moving.

The image below is what you're aiming for in this section.

o[l d@- |cuzms-|@N

&

xé§§§§i ._x§§§§ : e §§§§§?\ A\

Sounds like it’s time to script! In the Assets/Scripts folder in the Project view, create a
new C# script and name it CameraBounds.

Drag CameraBounds to the MainCamera.
Open the script and replace its contents with the following code:

using System.Collections;
using UnityEngine;

//1
[RequireComponent (typeof(Camera))]l
public class CameraBounds : MonoBehaviour {
//2
public float minVisibleX;
public float maxVisibleX;
private float minValue;
private float maxValue;
public float cameraHalfWidth;

//3
private Camera activeCamera;

//4
public Transform cameraRoot;

//5
void Start() {

—

//6
activeCamera = Camera.main;

//7
cameraHalfWidth =
Mathf.Abs(activeCamera.ScreenToWorldPoint (
new Vector3(0, 0, 0)).x -
activeCamera.ScreenToWorldPoint (
new Vector3(Screen.width, @, 0)).x) * 0.5f;

minValue = minVisibleX + cameraHalfWidth;
maxValue = maxVisibleX - cameraHalfWidth;
}
//8

public void SetXPosition(float x) {
Vector3 trans = cameraRoot.position;
trans.x = Mathf.Clamp(x, minValue, maxValue);
cameraRoot.position = trans;

[RequireComponent (typeof(Camera))] defines an attribute that adds additional
behavior to your methods, class and variables. The RequireComponent attribute
requires any GameObject attached to this script to have a Camera component
attached to it. It ensures that certain components appear together on the same
GameObject.

These variables are necessary for CameraBounds to work. minvisibleX and
maxVisibleX define the virtual edges of the map. minvalue and maxValue stores the
actual calculated limits of the camera’s x-position. cameraHalfWidth stores the
calculated half-width of the camera’s view frustum.

activeCamera stores a reference to the scene’s MainCamera.
cameraRoot is the target transform that will move left and right to follow the player.

Start() is a method that’s native to Unity’s GameObject lifecycle. It’s called once at
the start of the lifecycle.

This gets the MainCamera and stores a reference to it in the activeCamera variable.

The first line calculates half the width of the camera’s view by transforming the
screen’s left-most and right-most points from screen space to world space
equivalents using the camera’s ScreenToWorldPoint method. Then it takes the
absolute distance between these points as the camera’s half-view width. The
minValue and maxValue variables are assigned via simple addition and subtraction
with the minvisibleX and maxVisibleX along with cameraHalfwidth.

SetXPosition() is the method that moves the cameraRoot GameObiject. It’ll try to
move the object’s x-position to the x-parameter of this method. It also limits the
value of the x parameter between the allowed minValue and maxValue variables
using the Mathf.Clamp() method.

Save the script and return to the editor.

The CameraBounds script is ready to go, but that SetPostion(float x) method is
sitting idle — for the moment. You’ll build a GameManager script to handle that task!

A GameManager is a script that handles the general state of the whole game. It’s a
common feature in Unity games that has many purposes. In the case of PompaDroid,
it’ll:

Check if the hero is alive or dead

Determine when and where enemy droids should spawn

Manage input controls

Check player victory conditions

Handle camera events, such as following the player and stopping the camera when a

battle ensues.

Note: The GameManager script will be something you revisit and append as you
progress through this book.

Create a new C# script in the Assets/Scripts folder and name it GameManager. Open
it up, delete everything and add the following:

using UnityEngine;

public class GameManager : MonoBehaviour {
//1
public Hero actor;
public bool cameraFollows = true;
public CameraBounds cameraBounds;

//2
void Start() {
cameraBounds.SetXPosition(cameraBounds.minVisibleX) ;

¥
//3

void Update() {
if (cameraFollows) {
cameraBounds.SetXPosition(actor.transform.position.x);

b
s

Here’s what you just did in there:

1. You declared the required variables: actor will hold a reference to the Hero script,
cameraFollows indicates whether the camera should follow the hero or not, and
cameraBounds holds a reference to the CameraBounds script.

2. You set the initial position of the camera to the minvisibleX value with the Start()
method.

3. Inthe Update() method, you move the camera’s x-position to the player’s x-
position if the cameraFollows bool is set to true.

Save the script and go back to Unity. Now that you’ve configured the script, it’s time to
assemble the Game Manager.

In the Hierarchy, Create Empty and name it MyGameManager. Reset its Transform.
Drag the GameManager script from the Project view to the Inspector.

Make MyGameManager the parent of MainCamera then go to the Transform for
MainCamera. Set the Position to (0, 8.53, -7.61), Rotation to (30, 0, 0) and

Scaleto (1, 1, 1).
MyGameManager
MainCamera

Drag GameManager to the Camera Root field of CameraBounds if it’s not there
already. Set its Min Visible X to 5 and Max Visible X to 96.

= Hierarchy | = = | O Inspector | B v=
Create - | (Gr Al G ¥ Main Camera [Static ¥
M Qcame* =1 Tag | MainCamera + | Layer| Default fal
¥V MyHero
¥ HeroAnimator b .~ Transform i e
HeroSprite » &% [V Camera @ = %
. MaihladowCharacter @ o Flare Layer S %
Y MyGameManager | (©) ¥ Audio Listener O %
Main Camera v « (¥ Camera Bounds (Script) o
Script CameraBounds o]
Min Visible X 5
Max Visible X |96|
Camera Half width 0
mera Root A~ MyGameManager (Tran: ﬂ

Drag MyHero to the Actor field of MyGameManager, and then drag the MainCamera
to the Camera Bounds field of the GameManager.

= Hierarchy] = -= © Inspector] &=
v| oA . _
chte ‘ oAl ¥ MyGameManager [_] Static ¥
v * = !
L Tag | Untagged 4 | Layer| Default |
¥ MyHero
¥ HeroAnimatd » _~ Transform -
HeroSprite v |¥ Game Manager (Script) 8
ShadowCharacter Script GameManager o]
> Mal - Retar " MyHero (Hero) | of
i ae ager Camera Follows
.
Camera Bounds = Main Camera (CameraB ©|
[Add Component]

Change the MyHero Transform to (X:7, Y:0 Z:0) and click the Play!

The camera should follow the hero as you move him left and right. When the hero
moves far to the left, the camera stops following because there’s nothing there!

Note: If you get an error regarding a NullReferenceException in the
CameraBounds script, it is probably caused by not specifying a MainCamera for
the scene. The fix is simple: select MainCamera and set its Tag to MainCamera.

© Inspector | Bl o=
G & MainCamera [Static ¥
Tag| v Untagged r| Default]
Respawn 2,
Fm'lsh |z[-761 |
R) EditorOnly 20

otatig MainCamera |1Z| |
Scale Player |Z |1 |
e ¥C GameController 3,

v, @
WL N @ =
DA %,

You can also stop the camera following the hero by unchecking the Camera Follows
checkbox on the CameraBounds component.

You solved one problem and revealed another: the camera stops when you move too far
to the left or right. Our hero literally has one foot out the door.

\

\\\\\\

Not to worry — the fix is pretty simple. You’re missing walls to prevent the hero from
walking outside the camera’s view.

In the Hierarchy, create a new 3D GameObject\Cube and make it a child of
MyGameManager. Name this GameObject LeftCamBounds. Set its Position to (-8,
4.5, 0),Rotationto (0, 90, 0) and Scaleto (8, 10, 1).

Duplicate the LeftCamBounds by selecting it, right-clicking and choosing Duplicate.
Rename the new GameObject to RightCamBounds. Set its Transform’s position,
rotation and scale to (8, 4.5, 0), (0, 90, 0) and (8, 10, 1) respectively.

The MyGameManager hierarchy should now look like this:

¥ MyCameManager
MainCamera
LeftCamBounds
RightCamBounds

Check the scene. Two boxes should show up on either side of the hero:

Select RightCamBounds and LeftCamBounds in the Inspector and disable their Mesh
Renderer components.

¥ MyCameManager Is Trigger
Main Camera -
LeftCamBounds Materlal
RightCamBounds | Center
EventSystem Size
4 k_.;,|Qr|esh Renderer

Well, you have walls, which is great. However, they won’t position themselves correctly
when the aspect ratio changes. Think for just a moment about all the screen sizes and
aspect ratios out there...

The point is that you need to factor that in and support numerous aspect ratios when
you make any game.

The CameraBounds script can easily reposition walls since it already knows the
camera’s half-view width value.

Open the CameraBounds script and add the following just below public Transform
cameraRoot; — the last variable declaration:

//1
public Transform leftBounds;
public Transform rightBounds;

Next, add the following lines inside the Start() method, after the maxVvalue =
maxVisibleX - cameraHalfWidth; line.

//2

Vector3 position;

position = leftBounds.transform.localPosition;

position.x = transform.localPosition.x - cameraHalfWidth;
leftBounds.transform. localPosition = position;

position = rightBounds.transform.localPosition;

position.x = transform.localPosition.x + cameraHalfWidth;
rightBounds.transform. localPosition = position;

Here’s what these code snippets do:
1. Adds references to the wall GameObijects that you’ll use in the Start() method.

2. Makes calculations to move the wall to the edge of the camera’s view. Subtracts or
adds the cameraHalfwidth value to the center of the camera to determine the edge.
Moves the leftBounds and rightBounds objects to these edges.

Save and return to the editor. All that’s left is to set the references in the scene:

Drag LeftCamBounds to the Left Bounds field on the MainCamera. Then drag
RightCamBounds to the Right Bounds field on the MainCamera.

= Hierarchy | & -= © Inspector | o=
J Crexe ’I /c:"\“ _ g |Main Camera | [] Static ¥
M ?x:::o = Tag | MainCamera 4 | Layer| Default 3]
> Mapl b .~ Transform o %
Vv MyGameManager » @ ¥ Camera 1
Main Camera - ¥ Flare Layer %,

T:c ar:r:l: \ (£ ¥ Audio Listener SR

| Camera Bounds (Script) @ =

SR CameraBounds (o]

Min VisTale X 5 |

Max Visible 196 |

mera Half 0 |

Cai ~ MyGameManager (Tran: ©

Left Boun _ LeftCamBounds (Transf ©

Right Bounds ~RightCamBounds (Tran ©|

Hit the Play button and play the game. The hero won’t be able to escape the camera
view, nor will he be able to live on the edge.

Where to go from here?

Great job! You accomplished a lot in this chapter. Some of the highlights include:

Learned about Unity’s Mecanim and physics engines

Moved the character around the game

Animated and transitioned between the hero’s idle and walk states

Implemented input for character movement

Followed the hero around the map with a camera

Feel free to take a well-deserved break! In the next chapter, you’ll add the more
complex animation states to make the hero punch, jump and run across the map.

er 4: Running,

g, and Punching

As you ease into this chapter, think about how far you’ve come. Level? Check. Hero?
Check. He can even walk and idle.

Although it would be a little premature to throw him into a pit of droids — he has no
defense and moves slower than your average snail — it’s safe to say you’ve made a lot of
progress!

It’s time to add some pep to his step by giving him the ability to run. You’ll also give
him jumping and punching skills, which are standard movements for a beat ‘em up
game.

In this chapter, you’ll:

Move the hero around the map faster with running

Give the hero the ability to reach greater heights by jumping

Add an Actor superclass to the Hero script to enhance script reusability

Teach the hero about basic punching

By the end of this chapter, he’ll be ready to turn bots into scrap metal!

h raywenderlich.com 128

Run, sprite, run!

In the last chapter, you left the hero alone in a long, empty corridor with nothing to do
but a walkabout. He’s already bored. You could increase the hero’s walkSpeed attribute
so he moves faster, but here’s a better option: implement that running animation.

To add running, you’ll:

» Increase the movement speed

» Play the run animation

e Set up inputs to trigger running

Import Hero Run Animation.unitypackage from the Unity Packages folder. It
contains the hero_run_anim animation clip and all the sprites for the running

IR EEEY

In the Animation\Hero folder in the Project view, double-click
hero_anim_controller.controller to open the Animator view. Drag the Animator
view into Unity and dock it next to the Editor so that it’s handy (if it’s not there
already).

In the Animator, click the Parameters tab then the little + button. Select Bool and
name it ISRunning. When set to true, this new parameter will trigger the running
animation.

#2 Animator] # Scene

| Layers |] Parameters | »
(orName Y +

= Speed 0.0

Drag hero_run_anim to the Animator view to create a new Animation State for it.
Name it run.

B 3 Project
| Create |

i #2 Animator
| tayers || Parameters |

® Base Layer

+

Animation /Hero/hero_anim_controller.controller

¥/ Favorites
©) All Materials
(©1 All Models
(©) All Prefabs
©) All Scripts

v Assets.
¥ & Animation
== Hero
v Images
(& Background
MainMenu
v & Sprites.
(& Hero
Misc
&l Prefabs
(& Scenes
& Scripts.

Assets » Animation » Hero

hero_anim_controll...

hero_idle_anim

u\\

hero_run_anim

hero_walk_anim

One simply does not go from idle to run without some kind of transition, so you’ll
implement transitions between the other states and run. Right-click walk, pick Make

Transition, and then click on run. Select the transition and go to the Inspector.
Uncheck Has Exit Time and Fixed Duration in the transition settings and set
Transition Duration to 0.

Auto Live Link

© Inspector
&= walk -> run I
W= 1 AnimatorTransitionBase
Transitions Solo Mute
- @ =

= walk -> run

Has Exit Time IEI

¥ Settings

C

25

Fixed Duration CJ

Transition Duration (%) 0

Transition Offset 0

Interruption Source None

Ordered Interruption [
100 0:05 0:18

[Speed

[+] [Greater

:llo

[~ (true

Add two conditions: Speed is greater than 0.01 and IsRunning is true.

K

© Inspector
= palk -> run o
W= 1 AnimatorTransitionBase

Transitions Solo Mute

- W,
== walk -> run
Has Exit Time O
¥ Settings
Exit Time 0.625
Fixed Duration O

Transition Duration (%) 0 |
Transition Offset 0]
Interruption Source [None |
Ordered Interruption
@:00 0:05 0:1044

Conditions

= [Speed [+] [Greater :l0 |
= [Runm -] Cime)

Next, add a transition from run to walk, uncheck Has Exit Time and Fixed Duration
and set Transition Duration to 0. Add these conditions: Speed is less than 0.01 and
IsRunning is false.

Conditions
= [Speed [~] [Less :+] [0.01 |
= [IsRunning | -] [fatse ¢

These parameters make it so the hero must be moving faster than 0.01 and the
IsRunning boolean must be true to trigger the running animation; otherwise, he’ll
walk if moving and idle if not.

You’re making decisive progress towards giving your hero some serious moves. Next,
you’ll add transitions between idle and run as well as run to idle.

Create a new transition from the idle to the run state. Uncheck Has Exit Time and
Fixed Duration and set Transition Duration to 0. It takes the same conditions as walk
to run, so add the condition Speed is greater than 0.01 and IsRunning is true.

= dle -> run o %,
W= 1 AnimatorTransitionBase

Transitions Solo Mute

(il @

&= idle -> run
IHis Exit Time O I
Ttings
Exit Time 0.5
Fixed Duration L
Transition Duration (%) 0
Transition Offset 0
Interruption Source | None &l

Ordered Interruption [
@:00 0:0§ 0:10

= [Speed [=] [Greater +/[0.01]
= i =] (true 4

The last transition is from running to idle — you know, for when he needs to catch his
breath after shredding some droids.

Create a new transition from run to idle, uncheck Has Exit Time and Fixed Duration
then set Transition Duration to 0. Add these conditions: Speed is less than 0.01 and
IsRunning is false.

Auto Live Link ||| w8 run -5 idle o,
W= 1 AnimatorTransitionBase

Transitions Solo Mute
- *
== run-> idle

| Has Exit Time) I
ttings
Exit Time 0.625
—
Fixed Duration O
Transition Duration (%) 0
Transition Offset 0
Interruption Source | None ™

Ordered Interruption [V

C

= [Speed [+] (Less +) [o.01 |
= [IsRunning ~| (false 3

You’ve wired up the transitions like a pro, but you’ve got some scripting to do before he
actually runs. Open the Hero script and add the following just under the walkSpeed
member declaration:

public float runSpeed = 5;

K

This declares the runSpeed variable and sets it at five.
Add these right below:

bool isRunning;

bool isMoving;

float lastWalk;

public bool canRun = true;
float tapAgainToRunTime = 0.2f;
Vector3 lastWalkVector;

These are variable declarations needed to make the Hero run.
Finally, replace the Update() method with the new version below:

void Update() {
float h = Input.GetAxisRaw ("Horizontal");
float v = Input.GetAxisRaw ("Vertical");
currentDir = new Vector3(h, 0, v);
currentDir.Normalize();

//1
if ((v == 0 & h == 0)) {
Stop ();
isMoving = false;
} else if (!isMoving && (v !'= @ || h !'=0)) {
//2
isMoving = true;
float dotProduct = Vector3.Dot (currentDir,
lastWalkVector);

//3
if (canRun && Time.time < lastWalk + tapAgainToRunTime &&
dotProduct > 0) {
Run ();
} else {
Walk ();

//4
if (h !'=0) {
lastWalkVector = currentDir;
) lastWalk = Time.time;
}
Jy
¥

You’ll get an error about the Run method not existing. Ignore it. You’ll resolve it shortly.

The first four lines of code should be familiar, since these were retained from the old
version of Update (). To refresh your memory, the existing code simply gets directional
user input and stores them in the appropriate variables. Let's go over the new lines of
code one by one:

K

1. When there is no user input, you call Stop() and set the newly added isMoving
boolean to false to indicate that the hero is not moving.

2. When there is user input in any direction, you first set isMoving to true to indicate
that there is movement. Next, you get the dot product between the last movement
direction and the current movement direction to determine if the user pressed the
same direction twice. More on this later.

3. A positive dotProduct means the same direction was pressed twice. If both inputs
occur within the time interval you set in tapAgainToRunTime, you call Run(),
otherwise, you call walk(). In short, this code makes the hero run whenever the
same direction is rapidly pressed twice — also known as a double-tap.

4. Lastly, you store the current movement direction, and the current time — for use in
the next call to Update() — as lastWalkVector and lastWalk respectively. You only
do this for horizontal movement.

Note: dotProduct is a powerful operation you can use with vectors. With it, you
can check if two input vectors face in the same direction; a value of 1 means they
face the same way and -1 means they face in opposite directions. If the directions
are perpendicular, the value is 0. To check if two button presses are pointing in the
same direction, you just check if the dot product is greater than 0.

In the image below, the hero is moving in the direction of the white arrow. The green
zone represents the possible paths that would trigger run.

In the green zone, the white and green arrows represent a dotProduct result that’s
greater than 0. Red represents where the dotProduct is less than zero — aka any
negative value. The yellow arrow is perpendicular to the direction of the hero. Thus, it
represents a dotProduct of 0.

\\

Next, add the Run() method to the Hero script, ideally just below the closing bracket of
the public void Walk() method.

public void Run() {
speed = runSpeed;
isRunning = true;
baseAnim.SetBool("IsRunning", isRunning);
) baseAnim.SetFloat("Speed", speed);

This method sets the current speed to the hero’s run speed and tells the Animator to
change the animation accordingly.

Next, add the following inside the Stop() and Walk() methods, just before
baseAnim.SetFloat("Speed", speed);

isRunning = false;
baseAnim.SetBool("IsRunning", isRunning);

This line updates the IsRunning parameter in the Animator, which in turn disables the
run animation.

Save the Hero script, return to the editor and play the game! Press any direction key
twice and hold the second press. Running mode engaged!

You can play around with his speed by changing the runSpeed property of the Hero in
the Inspector. It’s set to a value of 5. Adjust and tweak it to your liking.

Your hero is now up and running! Cool, right?

K

He’s going to get a little bored unless you give him the ability to escape the ground.

Jumping up and falling down

Making the hero jump is easier in practice than it seems when you’re reading pages and
pages of written instructions. TL/DR: It’s easier than it seems at first!

Here’s how it will work: when the player presses the jump button, the hero will play his
jump animation, flying into the air as gracefully as a ballerina.

You’ll introduce physics controls that’ll “nudge” the hero with a bit of force at the start
of the jump and let the physics engine handle how he should fall to create a natural-
looking effect. He’ll power upwards and fall back to the ground on a bit of an arc.

The jump animation comprises three phases: Rise, Fall and Land:

» Rise is when he’s about to jump. He’ll lean down slightly to prepare the big leap!
This part of the animation will have the same duration regardless of jump height.

« Fall is when the hero is airborne. His feet will be in the air, and he’ll fall towards the
ground. This animation has a variable duration. When the hero does a little hop it’ll
be shorter but will last longer when he makes a big jump.

e Land is when the hero reconnects with the floor. He bends his knees to absorb the
force. This animation, like the rise phase, is a fixed duration.

P S S
Rise Fall Land

Setting up jump animation states

You’ll need animation states to represent the various phases.

K

Import Hero Jump Animation.unitypackage from the Unity Packages folder. It has
three animation clips and all the needed sprites.

Double-click hero_anim_controller.controller in the Animation\Hero folder in the
Project view to open it in the Animator. Add the hero_jump_rise, hero_jump_fall and
hero_jump_land animation clips to the hero_anim_controller animator controller.

i N 28 Animator
| Layers || Parameters | ® Base Layer

Animation/Hero/hero_anim_controller.controller

pation » Hero

/ (
L

jroll.... hero_idle_anim hero_jump_fall hero_jump_land hero_jump_rise hero_run_anim hero_walk_anim

Remove the hero_ prefix from the states so that you have three new states: jump_rise,
jump_land and jump_fall. With that, you’ve added the animation states to the
controller. Now you need transitions between phases.

m 22 Animator
| Layers || Parameters | @ Base Layer
G Name) o+

= IsRunning

Add a transition from the jump_rise to the jump_fall state then select it so you can
edit its parameters. Keep Has Exit Time checked, set Exit Time to 1. Also, uncheck
Fixed Duration and set Transition Duration to 0.

© Inspector
Auto Live Link @ jump_rise -> jump_fall @ = %

W= 1 AnimatorTransitionBase

Transitions Solo Mute

- %,
W jump_rise -> jump_fall

I Has Exit Time [I

v

Exit Time
Fixed Duration

iterrupson Soureqbone]
Ordered Interrupticy]
)00 q

Conditions

{ List is Empty
+ -

The jump _rise phase needs to complete its animation before transitioning to jump fall.
Turning on exit time and giving it a value tells Unity to transition to jump_fall only
when jump rise finishes.

K

Nicely done! The animator now knows that when the hero jumps, it must play the rise
clip and transition to the fall clip after rise finishes. You’ve made it easy to detect
because rise uses a fixed animation duration.

However, the fall clip has a variable duration, so a higher jump means it’ll play longer

than it would for a shorter jump. The game should transition to land only when the hero
touches the floor.

In the Events Parameter of the Animator window, add a new IsGrounded boolean.

It’ll be your go-between from jump_fall to jump_land. This parameter will be set to
true when the hero is in a collision with the floor.

l Layers H Parameters I -
(arName N o+

~ Speed

= IsRunning O

Create a new transition from jump_fall to jump_land. Select it, uncheck Has Exit

Time and Fixed Duration then set Transition Duration to 9. Add a new condition
where IsGrounded is true.

© Inspector
Auto Live Link w jump_fall -> jump_land -1

Wss 1 AnimatorTransitionBase

Transitions Solo Mute

® @

W jump_fall -> jump_land

Has Exit Time O
¥ Settings
Exit Time 0.25
Fixed Duration 0
ransition Duratior
Transition Offset 0 |
Interruption Source None 4]
Ordered Interruptic
:00

0:05

Conditions Il

=[Mljlu|
+ -

Add the final transition from jump_land to idle. Keep Has Exit Time checked, set Exit
Time to 1, uncheck Fixed Duration and set Transition Duration to 0. This will make
the Animator wait for jump_land to finish before it transitions to idle.

In effect, the hero will land and go back to bobbing, just waiting for the next enemy to
show its face.

© Inspector
& jump_land -> idle S %
== 1 AnimatorTransitionBase

Transitions Solo Mute

e N LT
=
- @ %
W jump_land -> idle
Has Exit Time /]
ttings
Exit Time 1
Fixed Duration []
Transition Duratior|0
Transition Offset 0
Interruption Sourcc

Ordered Interrupticy]
@00 §:05 0:10 0:15 0:20

Conditions
List is Empty

The jump animation flow is now complete!

To sum it up:

1. The jump starts with jump_rise.

2. It transitions to jump_fall when jump_rise is complete.

3. It plays jump_land when the parameter IsGrounded is true.

4. Finally, it transitions back to idle when jump_land completes.

Adding conditions for jumping

Our pompadoured protagonist should only be able to jump when he’s idling, walking or
running. There will be other states, but trust me, you don’t want him jumping about
after he’s died — sorry, no zombies allowed.

You need a transition from idle, walk and run to the jump_rise state. As you know, the
player will press the jump button, which will trigger the jump animation. Specifically,
it’ll trip a parameter that ultimately tells the state machine to transition to the

jump rise state.

This isn’t just any old parameter. It’s a Trigger type, which acts like a boolean
parameter but it automatically sets itself to false once any transition has used it.

Add a new Trigger parameter to hero_anim_controller and name it Jump.

l Layers H Parameters I Base La l Layers H Parameters l »

{orName I) (orName DI 3

= Speed ’0.0 | Float = Speed [T]
= IsRunning] ‘ Il:c:ol = IsRunning |
gge = IsGrounded []

Add a transition from idle to jump_rise. Uncheck Has Exit Time and Fixed Duration
the set Transition Duration to 0.

K

Add a condition and choose the Jump parameter. This time you won’t include any
condition values because triggers don’t need to be set.

© Inspector

&= idle -> jump_rise o Wy

w1 AnimatorTransitionBas.

Transitions Solo Mute

idle -> jump_rise

I Has Exit Time O I
v ings
Exit Time 0.5
Fixed Duration ||
Transition Duratior 0
Transition Offset 0

Interruption Source _None
Ordered Interrupticv]

Conditions

Now add more transitions from walk to jump_rise and run to jump_rise. Make the
settings and conditions the same as the idle to jump_rise transitions.

Your animator should look like similar to this:

HS m #8 Animator
| Layers H Parameters | ® Base Layer
‘QrName +

= Speed 0.0

= IsRunning o

= IsGrounded [

Animation/Hero/hero_anim_controller.controller

Okay, the animator is all set up. Off to scripting with you!

Jumping in code

Obviously, the pompadoured hero should jump when the player presses the jump
button. But there’s a little more to it: Remember how I mentioned that the duration of
jump_fall is variable? You need to make the UI allow for short and high jumps.

Until this point, the hero has received game input directly from the Input class.

>

(Input) (Hero)

You’ll create a mediator script which will allow you to process input and detect long
button presses before passing the message to the Hero. You’ll name this mediator
InputHandler.

K

(Input) anutHandIeD

Create a new C# script named InputHandler in the Scripts folder. Replace its contents
with the following:

using UnityEngine;
public class InputHandler : MonoBehaviour {

float horizontal;
float vertical;
bool jump;

float lastJumpTime;
bool isJumping;
public float maxJumpDuration = 0.2f;

//1
public float GetVerticalAxis() {
return vertical;

public float GetHorizontalAxis() {
return horizontal;

¥

public bool GetJumpButtonDown() {
return jump;

void Update() {
//2
horizontal = Input.GetAxisRaw("Horizontal");
vertical = Input.GetAxisRaw("Vertical");

//3
if('jump && !'isJumping && Input.GetButton("Jump")) {
jump = true;
lastJumpTime = Time.time;
isJumping = true;
} else if(!Input.GetButton("Jump")) {
//4
jump = false;

isJumping = false;

//5
if(jump && Time.time > lastJumpTime + maxJumpDuration) {
jump = false;

}
}

After declaring member variables at the top, this script:

1.

Declares the methods GetVerticalAxis(), GetHorizontalAxis(), and
GetJumpButtonDown (). The Hero script will call these methods to determine if there
is movement or jump input.

Stores the horizontal and vertical input axes in the Update method but doesn’t
change them.

Stores the jump variable. When the player presses the jump button, jump is set to
true until one of the following conditions are met:

Either the player releases the jump button...

Or, the jump button press is too long — the maximum button duration is stored in
the maxJumpDuration variable.

Save the InputHandler script.

Add the following declarations inside of Hero.cs below the other variable declarations:

//1
bool isJumpLandAnim;
bool isJumpingAnim;

//2
public InputHandler input;

//3

public float jumpForce = 1750;
private float jumpDuration = 0.2f;
private float lastJumpTime;

//4
public bool isGrounded;

The isJumpLandAnim and isJumpingAnim variables are where you store whether the
jump is currently playing or not, and they constantly update in the Update()
method.

This reference to the InputHandler script powers the input for the Hero script.

3. These are your jump variables — jumpForce controls how much force to add when
the hero jumps, jumpDuration detects higher jumps, and lastJumpTime is the last
time the hero jumped.

4. The isGrounded variable detects if the Hero is in a collision with the floor.

Still in Hero.cs, find the Update() method and add these to the beginning of the
method:

isJumpLandAnim =
baseAnim.GetCurrentAnimatorStateInfo(@).IsName("jump_land");
isJumpingAnim =
baseAnim.GetCurrentAnimatorStateInfo(0@).IsName("jump_rise") ||
baseAnim.GetCurrentAnimatorStateInfo(@).IsName("jump_fall");

These lines update the variables that store whether the hero is jumping or not.

While you’re in Update(), replace the declaration of float hand float v with the
following lines:

float h
float v

input.GetHorizontalAxis ();
input.GetVerticalAxis ();

bool jump = input.GetJumpButtonDown();

Still in the Update() method, add these lines at the end, right before the last closing
curly brace:

if (jump &&
'isJumpLandAnim &&
(isGrounded || (isJumpingAnim && Time.time < lastJumpTime +

jumpDuration))) {
Jump(currentDir);

This block closes up some of the conditions. It allows the hero to jump when the player
presses the appropriate input and the hero isn’t in the midst of landing and he
isGrounded on the floor, or the jumpDuration hasn’t expired.

For reference, your new Update() should now look like this:

void Update() {
isJumpLandAnim =
baseAnim.GetCurrentAnimatorStateInfo(@).IsName("jump_land");
isJumpingAnim =
baseAnim.GetCurrentAnimatorStateInfo(@).IsName("jump_rise") ||
baseAnim.GetCurrentAnimatorStateInfo(@).IsName("jump_fall");

float h
float v

input.GetHorizontalAxis ();
input.GetVerticalAxis ();

K

bool jump = input.GetJumpButtonDown();

currentDir = new Vector3(h, 0, v);
currentDir.Normalize();

if ((v ==0 && h == 0)) {
Stop ();
isMoving = false;

} else if (!isMoving && (v !'= 0 || h !=0)) {
isMoving = true;

float dotProduct = Vector3.Dot (currentDir,
lastWalkVector);

if (canRun && Time.time < lastWalk + tapAgainToRunTime &&
dotProduct > 0) {
Run ();
} else {
Walk ();

//3

if (h '=0) {
lastWalkVector = currentDir;
lastWalk = Time.time;

b
b
}
if (jump && !isJumpLandAnim &&
(isGrounded || (isJumpingAnim && Time.time < lastJumpTime +

jumpDuration))) {
Jump(currentDir);

}

You’re going to get an error saying the Jump method doesn’t exist yet. Ignore it because
you’ll add it shortly.

Add the following methods inside Hero.cs:

void Jump(Vector3 direction) {
//1
if (!isJumpingAnim) {
baseAnim.SetTrigger ("Jump");
lastJumpTime = Time.time;
//2
Vector3 horizontalVector = new Vector3(direction.x, @0, direction.z) x*
speed * 40;
. body.AddForce(horizontalVector,ForceMode.Force);
//3
Vector3 verticalVector = Vector3.up *x jumpForcex Time.deltaTime;
body.AddForce(verticalVector, ForceMode.Force);

}
/74

K

void OnCollisionEnter(Collision collision) {
if (collision.collider.name == "Floor") {
isGrounded = true;
baseAnim.SetBool("IsGrounded", isGrounded);
DidLand();

}
}
//5
void OnCollisionExit(Collision collision) {
if (collision.collider.name == "Floor") {
isGrounded = false;
baseAnim.SetBool("IsGrounded", isGrounded);
}
}
//6
void DidLand()
{
Walk();
}

That’s a big chunk. Let’s step through what you’re doing in there:

1.

Here, the Jump method becomes the mechanism that applies the jump force of the
hero.

Jump is called until the player stops pressing the jump button or the jumpDuration
expires. At the beginning of every jump, it applies a jump force in the direction the
hero character is facing.

When the Jump method is called, this applies a vertical force to move the player
upwards.

The OnCollisionEnter(Collision collision) is a built-in method for
MonoBehaviours. It is automatically called whenever another collider hits the
attached collider. Its role is to detect when the hero collides with a GameObject
named "Floor" and to update the IsGrounded parameter of baseAnim.

OnCollisionEnter(Collision collision) is another built-in method that is called
whenever an attached collider detects that another collider has stopped colliding
with it. Here, you use it to detect when the hero is in the air. It also updates the
IsGrounded" parameter of baseAnim.

Finally, DidLand is called when the hero collides with the floor. When that happens,
you simply call Wwalk() to get the hero walking again.

Next, still in Hero.cs, replace the FixedUpdate () method with the following:

void FixedUpdate() {

K

Vector3 moveVector = currentDir * speed;

if(isGrounded){
body.MovePosition (transform.position + moveVector x

Time. fixedDeltaTime);
baseAnim.SetFloat ("Speed", moveVector.magnitude);

¥
if (moveVector != Vector3.zero) {
if (moveVector.x '= 0) {
isFacingLeft = moveVector.x < 0;
FlipSprite (isFacinglLeft);
s

You added a new condition before letting the hero move. When isGrounded is false, the
player won't be able to move the hero because the pompadoured protagonist is
airborne. Remember that in OnCollisionEnter, you set isGrounded to true when the
hero collides with the floor, and to false when the hero jumps in OnCollisionExit.

Save the script and return to the editor. For now, you’re finished with the jumping code
and are down to adding a few references to wire it all together!

In the Hierarchy, select MyGameManager and add a new InputHandler component.

© Inspector | =
3 ¥ MyGameManager [_] Static ¥
hd
Tag | Untagged 4 | Layer| Default $ |
» .~ Transform =
v . |¥ Game Manager (Script) 3 %
Script GameManager (o]
Actor + MyHero (Hero) ©
Camera Follows (v
Camera Bounds + Main Camera (CameraBounds ©
v = ¥ Input Handler (Script) 3%
Script InputHandler (o]
Max Jump Duration 0.2

Set the Input property of the Hero to that InputHandler by clicking the selection
button and selecting MyGameManager from the list.

oF ¥ [MyHero Dsm -

Tag [Untagged +] Layer| Defaul]

ni
AMyH o (Rigi dbndv)
Shadow Sprite [ShadowCharacter (Sprite Ren ©
Speed 2
Walk Speed

» ¢ ¥ Box Collider @
> 5 Rigi @ 5t %

[Add Component

Run the game and press the S key to jump. Hold it down longer to jump higher and tap
it really fast to make him hop. :]

What is up with that shadow? It’s a bit clingy, don’t you think?

\“ v

-

Open the Hero script and add this block before the closing brace } in the Update()
method:

\

Vector3 shadowSpritePosition = shadowSprite.transform.position;
shadowSpritePosition.y = 0;
shadowSprite.transform.position = shadowSpritePosition;

These lines tell the shadow sprite to give the hero some space by staying at a y value of
0.

Save the script and go back to Unity. Select MyHero and assign the Shadow Sprite
property to the ShadowCharacter.

= Hierarchy L@ ea] @ nspector L]
| Create -| (@rAl A ¥ MyHero | [] Static ¥
v Qcame* = T = N

ag Layer Default ¢]
b HeroAnimator b~ Transform %
IShadowCharacterI"’"" (Script) o %,
> Mapl Script . Hero fo}
b MyGameManager Base Anim 5% HeroAnimator (Ani| ©
Body A MyHero (Rigidbody ©
| Shadow Sprite . ShadowCharacter (| ©|
Speed 2 |
Walk Speed 2 |
Run Speed 5 |
Can Run (v
Input |« MyGameManager (I ©
Jump Force 11750 |
Is Grounded -

Run the game again. Ahh...much better. Jump around a bit more to get a feel for your
game.

S
A s

s
A A

N .

Does it seem a little "floaty" to you? He stays airborne for longer than most people
would consider normal, unless they’re Martian. The issue isn’t that the hero can defy
logic, rather it’s your gravity settings.

In the top menu, select Edit \ Project Settings \ Physics to open 3D physics settings in
the Inspector.

K

Signin...

Selection >
Proje e g Input
q . Tags and Layers
Graphics Emulapon > e
Network Emulation > Time
Snap Settings... Player

Physics 2D
Quality
Graphics
Network
Editor

Change Y Gravity to -12 to bring the hero back down a little faster.

@ PhysicsManager

@ = %
Gravity X 0 F -12 F 0
Default Material None (Physic Material) Lo
Bounce Threshold 2
Sleep Threshold 0.005
Default Contact Offset 0.01]
Default Solver Iteratiol 6
Default Solver Velocity
Queries Hit Backfaces [_|
Queries Hit Triggers [/

-

Enable Adaptive Force| |

Contacts Generation | Persistent Contact Manifold ™
Auto Simulation 4

Auto Sync Transforms/v/

Contact Pairs Mode | Default Contact Pairs al
Broadphase Type | Sweep And Prune Broadphase ™
World Bounds

Center X 0 Y 0 Zo

Extent X 250 Y 250 Z 250
World Subdivisions '8 |
¥ Layer Collision Matrix

Next, select Edit \ Project Settings \ Time from the top menu to open the
TimeManager settings. Set the Fixed Timestep to 0.02 and Maximum Allowed
Timestep to 0.33333.

© Inspector

Q‘} TimeManager @ = %=
Open
Fixed Timestep 0.02
Maximum Allowed Timestep 0.33333
Time Scale 1

Maximum Particle Timestep 0.03 |

Test it out again. Sure, his jumps are little impressive but far more believable.

K

Great job! The hero can run and jump his way around the map! You’re at the halfway
mark for this chapter. Save your work, get up, shake off the cobwebs and get ready to
add punching to the hero’s repertoire of movement.

A little cleanup

Before you add punches, take a look at the Hero script. It’s growing quickly! At this rate,
it’s going to be massive. You should refactor, aka restructure, to keep functionality
redundancy to a minimum.

Classes are the basic building block of Object Oriented Programming (OOP). A class
can be based on another class, much like parenting works for GameObjects. A child
class can Inherit the behavior of its parent without needing its own classes to tell it
what to do. Consider the following image:

Actions: Actions:
Punch Punch
Walk Walk

Take Damage Take Damage
Die Die
Navigate Run
Use Powerups
Jump

The protagonist and enemy share several actions: walk, punch, take damage and die.
The actions listed in green are not shared: jumping, running and reacting to player
controls.

Now is the perfect time to set up a superclass from which the Hero and Robot scripts
will inherit. You’ll call it Actor and use it to implement shared methods.

K

Actions:
Punch

Walk
Take Damage

Die

Actions: Actions:

Navigate Run
Use Powerups
Jump

A superclass allows you to retain the functionality of various classes while reducing the
amount of code needed to support the game. Less code also means lower maintenance
effort. Note that the actor is not necessarily a hero or a robot, but both are always
actors.

Create a new C# script in the Scripts folder, name it Actor and open it. Remove the
default Start() and Update() methods.

Now open Hero.cs — you’re going to switch between these two scripts several times in
the next couple of pages. Change the class declaration in Hero to:

public class Hero : Actor {

This makes the Hero class a derived class of Actor. All public and protected methods
and properties of Actor will be accessible to the Hero class.

Copy the following properties from Hero to Actor and then delete them from Hero:

public Animator baseAnim;
public Rigidbody body;
public SpriteRenderer shadowSprite;

public float speed = 2;
protected Vector3 frontVector;

public bool isGrounded;

Make sure they’re safely in the Actor script before you delete them from the Hero
script.

K

You’ll need to migrate some methods from the Hero script to the Actor script as well:
OnCollisionEnter, OnCollisionExit, DidLand and FlipSprite. You’ll also need to
change the access modifiers for a few methods.

Add the following code inside the Actor script:

public virtual void Update() {
Vector3 shadowSpritePosition = shadowSprite.transform.position;
shadowSpritePosition.y = 0;
shadowSprite.transform.position = shadowSpritePosition;

}

The virtual keyword, when used in a method declaration, allows any derived class to
override said method. More on this later.

Next, change the Update() method declaration in the Hero script to the following:

//1
public override void Update() {

Make this the first line of the Update() method:

//2
base.Update();

Remove these lines from the end of the Update() method:

//3

Vector3 shadowSpritePosition = shadowSprite.transform.position;
shadowSpritePosition.y = 0;

shadowSprite.transform.position = shadowSpritePosition;

Overriding is used when you want a derived class to change the behavior of a parent
class’ method. In the above case, the Hero script overrides and adds its own
functionality to the actor’s Update method. The Actor class is now responsible for
updating the shadow’s position, while the derived class Hero now handles all the unique
hero-ey actions.

1. The Update() method of the Hero script now overrides its parent’s Update() so that
an instance of the hero will not use Update() from Actor.

2. By adding base.Update(); inside of the Hero’s Update(), you invoke Update() from
Actor, which lets you update the protagonist’s shadow. The keyword base refers to
the superclass, which is the Actor class.

3. Since base.Update() now handles the shadow's position, you removed this duplicate
functionality from the Hero class.

Next, add the following methods to the Actor class:

protected virtual void OnCollisionEnter(Collision collision) {
if (collision.collider.name == "Floor") {
isGrounded = true;
baseAnim.SetBool("IsGrounded", isGrounded);
DidLand();

}
protected virtual void OnCollisionExit(Collision collision) {
if (collision.collider.name == "Floor") {
isGrounded = false;
baseAnim.SetBool("IsGrounded", isGrounded);
}
protected virtual void DidLand()
{
}

Look familiar? Save for the virtual keyword, these are methods you created for the
Hero script. To refresh your memory, these methods help with detecting and animating
ground collision, which is a shared functionality between the hero and all other actors.

Next, open Hero.cs and remove the following methods: OnCollisionEnter,
OnCollisionExit.

Still in the same script, replace DidLand with the following:

protected override void DidLand()

base.DidLand();
Walk();
}

Almost there! Migrate the FlipSprite method from the Hero script to the Actor script,
shown below for reference:

public void FlipSprite(bool isFacingLeft) {
if (isFacingLeft) {
frontVector = new Vector3(-1, 0, 0);
transform. localScale = new Vector3(-1, 1, 1);
} else {
frontVector = new Vector3(1, 0, 0);
transform.localScale = new Vector3(1, 1, 1);
h
s

You simply moved this method from the Hero script to the Actor script. Nothing new
here.

K

Save the scripts and return to Unity to check if the references to other components are
still correct against the below image:

= Hierarchy & -= | © Inspector | o =
| Create 7] (Al \? ¥ MyHero [_] Static ¥
=1 e Tag| L d +| Layer| Default :)
3%
ipt) S

Hero (o]
% HeroAnimator (Animator.
A MyHero (Rigidbody)
- ShadowCharacter (Sprite

Script
Base Anim

» MyGameManager

Shadow Sprite
Speed

Is Grounded O
Walk Speed
Run Speed

Jump Force 1750

» i (¥ Box Collider a3 %
> 2% Rigidbody @ =

[Add Component]

If you see duplicate properties in the Inspector, then it means you forgot to remove
them from the Hero script. Go back to the migration steps shown above.

Save both scripts and play your game. It should work exactly like it did before
refactoring. If not, retrace some steps or reference the final version of the project for
this chapter to see what went wrong before you continue.

Taking a jab at it

The first order of business before adding any punches is to set up collision detectors so
that your game can tell if the hero is just shadow boxing or delivering some poor droid a
punishing blow. You’ll use box collision to allow the game to detect these collisions
between the hero and enemies. In the case of this game, there are boxes around the
enemy and the hero’s punch. When they come into contact, you get a collision.

Note: Fancy mesh collisions are more accurate but can slow down the game and
require more effort to set up. And with a simple game like this, box colliders are a
logical tradeoff.

The hero’s punch box is shown in red below:

i L\K\HK\T

o C‘&'\\\\\ ?
ﬂ%m\ »

o

If it finds a hit, the game registers it and applies damage to the object that sustained
the hit. In the image below, the hero’s punch box overlaps the robot’s hit box (yellow),
which triggers a small explosion.

You’ll make an animation, box collider and a script to set up the punch.

Animating the punch

First, import the Hero Punch Animation.unitypackage from the Unity Packages
folder, which contains the hero_attack_anim animation clip along with the sprites.

K

£ A4 &

Add a new 3D Cube GameObject, rename it AttackCollider, set HeroAnimator as its
parent and reset its Transform.

= Hierarchy
| Create ~| (QrAll
v Q Game*
¥ MyHero
¥ HeroAnimator
HeroSprite
AttackCollider
ShadowCharacter
> Mapl

Remove the Mesh Renderer component from the AttackCollider by right-clicking the
Mesh Renderer label and selecting Remove Component — the box collider is the only
component necessary to determine collisions with enemies. Do the same for the Mesh

Filter component.

© Inspector
[|AttackCollider | [Static ¥
Tag [Untagged 4| Layer| Default tJ
b .~ Transform il e
b |/ Cube (Mesh Filter) o
v ... ¥ Mesh Renderer O

Move Down
Copy Component

¥ Materials
Size K |

In the Box Collider component of the AttackCollider, check IsTrigger. This will
convert the box collider to a Trigger Collider; it detects and allows other objects to
pass through, unlike a rigid collider.

Uncheck the Box Collider component to disable it. You’ll set up the attack animation
to control the collider’s enabled state, because the game only needs to check collisions
whenever the hero is punching!

© Inspector | =
\" | AttackCollider [] Static ¥
A d —_
Tag | Untagged 4 | Layer| Default 4|
b~ Transform i« 8
| v i |_IBox Collider bl <
| # | Edit Collider
Ils Trigger 4
Material None (Physic Material) [o]
Center
X 0 YO Z0
Size
X1 Y|1 Z|1

Setting up the animation
Select the hero_anim_controller from the Animation\Hero folder.

In the Animator window, add two int event parameters: EvaluatedChain and
CurrentChain. You’ll use these to determine if an attack animation has played.
Additionally, since you’re using two parameters to store attack states, the game will
allow the hero to “queue” attacks, which will be fun for the player and useful for you
when you implement attack chaining.

#2 Animator # Scene

| Layers M Parameters | L
QrName +

= Speed 0.0 |

= IsRunning O

= IsGrounded o

= Jump (@)
EvaluatedChain 0
CurrentChain

You need to add the hero_attackl_anim state to the state machine. Select
hero_anim_controller, and in the Animator window, right-click and select Create a
Sub-State Machine. This is how you add a new state machine inside of your base state
machine.

K

2 Animator #s
| Layers H Parameters |
o Name

t-J Base Layer Auto Live Link

= IsRunning (]
= IsGrounded o
o

= Jump

i

Create State »

Create Sub-State Machine

Copy current StateMachine

Animation/Hero/hero_anim_controller.controller

Rename it attack, then double-click the attack state to view what is inside.

#8 Animator
| tayers || Parameters ® Baselayer attack
(GrName

= IsRunning
= IsGrounded

= Jump

= EvaluatedChain

= CurrentChain

Animation/Hero/hero_anim_contre

This new sub-state machine is a complete state machine with its own entry and exit
methods. A key benefit is that sub-state machines make it easier to manage an
animator. Note that the top bar shows when you’re inside a sub-state machine, and it
lets you navigate back to the parent state machine, Base Layer.

’ Base Layer attack

While you’re inside the attack state machine, drag the hero_attackl_anim animation
to the grid to create a new attack state then name it attackl.

K

22 Animator #H
| Layers || Parameters | Base Layer attack Auto Live Link
(GeName

= IsRunning

= IsGrounded

= Jump

= EvaluatedChain

= CurrentChain

qqee

Animation/Hero/hero_anim_controller.controller

— N LY E

/

hero_idle_anim hero_jump_fall hero_jump_land hero_jump_rise hero_run_anim hero_walk_anim

Add a transition from the attack1 state to Exit. Set Exit Time to 1, uncheck Fixed
Duration and set Transition Duration to 0. When attackl1 finishes playing the punch
animation, the animator will exit the sub-state machine and proceed as normal.

© Inspector
AutoLivelink ||| & artackl -> Exit %
W% 1 AnimatorTransitionBase

Transitions Solo Mute
- .g,'

W= attackl -> Exit

I Has Exit Time HI
Settings

Exit Time [1
Fixed Duration O
Transition Duratior 0
Transition Offset |0

Interruption Source None 4]

Ordered Interrupticy]
Cannot preview ition, there is no ination state
Conditions
List is Empty

Return to the Base Layer by clicking in the navigation at the top-left corner of the
Animator window. Add a new transition from idle to the attack sub-state — you’ll
need to specify the transition is for the attack1l state. (States\attackl)

Base Layer

Auto Live Link

States attackl
StateMachine e e
>

/Hero/hero_anim.

Select that new transition then uncheck Has Exit Time and Fixed Duration. Set
Transition Duration to 0, and add two conditions: CurrentChain must be Greater
than 0, and EvaluatedChain must be Less than 1.

[© Inspector [

&= idle -> attackl S
W= 1 AnimatorTransitionBase

Transitions Solo Mute
- @ %

— idle -> attackl

|V Settings

Exit Time 0.5

Fixed Duration LJ

Transition Duratior 0

Transition Offset 0

Interruption Source None s
Ordered Interruptic»

@ 0:05 8

Conditions
= |CurrentChain [+] (Greater _:] [0]
EvaluatedChain |~. Less N l 1 l

Add a transition from walk to attack/attackl with the same settings and conditions.

K

Your state machine should look like this when done:

Base Layer Auto Live Link

The attack sub-state machine should look like this:

Base Layer attack Auto Live Link

You can now transition to attack from either the idle or walk state. You’re all finished
creating the animation state for punching!

Coding the punch

Before editing the Hero script, you need to include the attack in the InputHandler class.
These additions are minor and simply pass the input from when the player presses the
attack button to the InputHandler.

Open the InputHandler script, and add the following variable to the top of the class:

bool attack;

K

Add the following method beneath the other ones:
public bool GetAttackButtonDown() {

return attack;
¥

In the Update() method, find vertical = Input.GetAxis("Vertical"); and add the
following right below it:

attack = Input.GetButtonDown("Attack");

That’s it for the InputHandler script. Save and close it. You’ll modify the Actor and
Hero scripts next, so open up the Actor script and add this method:

public virtual void Attack() {
baseAnim.SetTrigger("Attack");

Here you’ve made the generic attack trigger for all Actor derived classes. Unless it’s
overridden, all derived classes will trigger an Attack event on the baseAnim.

Open the Hero script and add the following properties near the top:

bool isAttackingAnim;
float lastAttackTime;
float attackLimit = 0.14f;

These variables detect when the hero is attacking. You also set an attackLimit to limit
the player’s ability to set up excessive attack queues.

In the Update() method, at the top and right below the base.Update() line, add the
following code;

isAttackingAnim =
baseAnim.GetCurrentAnimatorStateInfo(@).IsName("attackl");

This detects when the hero is in attack state.

Still in Update(), add this right below bool jump = input.GetJumpButtonDown();:
bool attack = input.GetAttackButtonDown();

Here you have your attack input code along with the other input commands.

In Update(), wrap the whole movement code block with the if(!isAttackingAnim)
condition. It should look like this when you’re done.

if (!isAttackingAnim) {

if ((v =0 &% h == 0)) {
Stop ();

K

isMoving = false;
} else if (!isMoving && (v !'= @ || h !'=0)) {
isMoving = true;
float dotProduct = Vector3.Dot (currentDir, lastWalkVector);
iE (canRun && Time.time < lastWalk + tapAgainToRunTime && dotProduct
> 0)
Run ();
} else {
Walk ();
if (h !'= 0) {
lastWalkVector = currentDir;
lastWalk = Time.time;
¥
¥
h
s

The if(!isAttackingAnim) condition limits the hero’s movement when the attack
animation is playing. You don’t want the hero to move when he’s punching — trust me
when I say that it just doesn’t look smooth in this game! Additionally, the walk
animation shouldn’t play simultaneously with the attack animation, and it won’t now.
Our pompadoured protagonist would appear to slide around the map while punching.
You can imagine how amateurish that would look to the player!

You need to modify the jump condition too. In the Update method, add an !
isAttackingAnim condition check, as shown below:

if (jump && 'isJumpLandAnim && !isAttackingAnim &&
(isGrounded || (isJumpingAnim && Time.time < lastJumpTime +
jumpDuration))) {
Jump(currentDir);

Add the following lines after the jump code block at the end of the Update() method.

if (attack && Time.time >= lastAttackTime + attackLimit) {
lastAttackTime = Time.time;
Attack();

}

This is the block you’ve been waiting for. It detects the attack button input and tells the
hero to throw that punch!

In the FixedUpdate() method, add the !isAttackingAnim condition to the isGrounded
condition as shown below:

if (isGrounded && !'isAttackingAnim) {
body.MovePosition (transform.position + moveVector x
Time.fixedDeltaTime);
baseAnim.SetFloat ('Speed", moveVector.magnitude);

}

K

This modifies the physics movement condition, disabling the hero’s movement
whenever he attacks.

Finally, add the Attack() method to the Hero script:

public override void Attack() {
baseAnim.SetInteger("EvaluatedChain", 0);
baseAnim.SetInteger("CurrentChain", 1);

s

This method overrides the Attack method from the Actor, allowing the hero to perform
a different punch logic whenever Attack is called. For a simple punch, the hero just sets
the integer values of the two int animator parameters, EvaluatedChain and
CurrentChain, to @ and 1 respectively. The animator then transitions the state machine
to the attack state.

Save all scripts, return to the editor and run the game. Press the A key on your
keyboard. Now there’s a guy who doesn’t know when to let something go!

He’s locked in an eternal cycle of violence because there is no condition that stops
punching. Specifically, the Hero script doesn’t know if the hero actually threw a punch!

To end the perpetual punching, you’ll employ Animation Events, a feature of
Mecanim.

Animation Events allow you to trigger any public method of any component or script
that’s attached to the same GameObject as the Animator to which it is attached. It’s an
especially helpful feature for specifying when certain events should happen in the
script.

In the current scenario, Hero needs to know that attackl played. Your animation event
will calculate the EvaluatedChain value of the Hero class.

However, the hero script is not attached to the same GameObject as its animator so the
animation events won’t reach the Hero script. To work around that, you need a class to
trigger the same behavior towards the hero script.

Create a new C# script in the Assets/Scripts folder and name it HeroCallback. This
script will forward animator callback methods to the Hero class. Open it up.

Replace the contents of HeroCallback with the following:
using UnityEngine;

public class HeroCallback : MonoBehaviour {
//1
public Hero hero;

K

//2
public void DidChain(int chain) {
hero.DidChain(chain);
}
}

The new HeroCallback class does the following:
1. Creates a reference to the hero where the Hero’s DidChain () method will be called.

2. When called, this calls the DidChain(int chain) method to the hero property,
which notifies the Hero that the punch animation is complete — this is the actual
method that’s accessible to the animation event.

Note: This will cause an error because DidChain isn’t defined yet in the Hero class.
Ignore it.

Open the Hero script and add the following method:
public void DidChain(int chain) {
baseAnim.SetInteger("EvaluatedChain", 1);

DidChain updates the EvaluatedChain value of the animator to 1, meaning that it has
evaluated the first attack.

Save your scripts, return to Unity and add the HeroCallback component to
HeroAnimator.

= Hierarchy & -= | ©® Inspector | &=
e - .
Cg':: Ll \ ’ ¥ HeroAnimator [_] Static ¥
v ame* =™
SRR Tag | Untagged 4+ | Layer| Default
iyl 0
HeroAnimator » .~ Transform 1
ShadowCharacter » 5= ¥ Animator @ = %
:Mapl . ¥ o Hero Callback (Script) ﬁ -;-I 3‘
MyGame Ry Script HeroCallback o
AttackCollider —_—
Hero None (Hero) [0}
[Add Component }

You also need an animation event in the hero attackl anim clip. Select the
HeroAnimator, open the Animation window and change the current animation clip to

hero_attackl_anim.

Beat ’Em Up Game Starter Kit Chapter 4: Running, Jumping, and Punching

hero_attack1_anim

v hero_idle_anim
hero_jump_fall
hero_jump_land
hero_jump_rise
hero_run_anim
hero_walk_anim

Create New Clip...

Select the first frame and click the new animation event button to add a new
animation event marker at the first frame of the animation.

Select the animation event and in the Inspector, change Function to DidChain(int)
and set the int parameter value to 1.

© Inspector

" "

@ =
S

¥ [HeroAnimator | [] Static ¥

Tag Laver (Do)

h raywenderlich.com 169

Now press run and watch him take a quick jab! Take a moment to watch the punch
animation and how it activates the punch box too. Neat, isn’t it?

Wow! Look at you. You started with a character that could only walk around and ended
with a lean, mean punching machine. And never will you see that perfectly coifed
hairdo fall out of place, no matter how hard you make him punch.

This chapter, you’ve managed to:

e Make the hero run

» Make the hero jump

» Create an Actor super-class and cleaned the Hero class
» Make the hero punch!

Along the way, you got a lot of experience working with transitions and animation
states. You also set up a couple of input options and an Input Handler so that the player
has more control over the jump, and therefore more fun!

You did some refactoring so that your end product is cleaner, lighter and easier to
maintain. You also set up collisions so that the hero’s punch animation actually does
something besides just look cool, and lastly, you spent a lot of time coding to make
everything work together.

Although running, jumping and punching are interesting, without a foe to bash to bits,
the game is pretty pointless. In the next chapter, you’ll start working on the formidable
foes to give the hero a purpose. So get ready to bring on the robots!

er 5: Bring on the

At this point, you’ve got a Pompadoured hero that’s full of life and ready to fight. He’s
walking, idling, jumping and punching on command. Most importantly, his hair is never
out of place.

But you’re not ready to release this game yet. You still need enemies, and you need to
do something about that punch. At present, it’s little more than a powerful looking
gesture that doesn’t connect. You’re building a beat ‘em up game, so he should be able
to crack some robot skulls, right?

You’ll address the hero’s lack of power in this chapter. Here’s a preview of the road
ahead:

e Add arobot to the scene, so the hero has something to punch.

» Apply layers and have an understanding of their effects on physics engine collisions.
» Animate the robot, implement a life counter and knock it over while killing it.

» Use coroutines to create time-sensitive effects.

» Add a special animation to show when the robot takes a punch.

Get ready to lay some smack down!

h raywenderlich.com 171

Robot design 101

First, you’ll need to understand a few things about these scrap-metal contraptions.
Don’t worry — no degree in robot engineering is required!

A robot is the basic “bad guy” in Pompadroid. This contraption causes the hero major
headache, requiring multiple punches to put it down. As durable as it is, there is
nothing remarkable about it. It knows only a few things: punching, chasing, walking
and waiting. In this chapter, you’ll focus on what happens when it takes a punch and
tend to the rest later.

These robots are composed of three overlayed sprites: a body, smoke plume and a belt
sprite, as seen below:

You’re using separate sprites because you’ll eventually create different robot classes, as
shown below. To accommodate various actions without resizing, the sprites are also
larger than the actual drawing they contain.

Robot animation clips will contain multiple sprite renderers. They’ll change at the same
time to keep the three sprites in sync as they update during the animation.

© Animation | Op,gl
Preview | @ | a1 | > | b1 DM | 0 {

robot_idle_anim Samples |12 | 4 | U+ ‘-

¥ [Z1EnemyBelt : Sprite =

¥ [Z1EnemyBody : Sprite <

¥ [Z1EnemySmoke : Sprite <

i Add Property ‘

Dopesheet

In this chapter, you’ll only work with three clips: the idle animation for when it’s
standing about, the hurt animation for when it’s taking damage, and the knockout
animation for when it’s dying.

Import Robot Animations.unitypackage from the Unity Packages folder, which
includes the robot animation states:

» robot_idle_anim: The robot’s idle animation that has five frames for each robot
sprite.

» robot_knockout_anim: The death animation that also has five frames for each
sprite.

e robot_hurt_anim clip: The punch reaction animation that has three frames for each
sprite.

Note the new Robots folder in the Assets/Animation folder — this is where you’ll store
robot animation clips and other assets.

Got everything imported? Good! You're ready to meet these dreadful metal antagonists.

Robot assembly

Create a new GameObject named EnemyRobot and set its Position to (X:15, Y:0, Z:
0). This should put the robot right in front of the hero.

Next, add the robot shadow by creating a new GameObject named ShadowCharacter
and make it a child of EnemyRobot. Set its Transform Position, Rotation and Scale to
(X:0, Y:0, Z:0.1), (X:30, Y:0, Z:0) and (X:1, Y:1, Z:1),respectively. Add a
SpriteRenderer to it and set shadow_character as its sprite.

K

© Inspector

¥ 'ShadowCharacter | [Static ¥
Tag | Untagged ¢ | Layer| Default s
¥ .~ Transform 3 %,
Position X 0 Y 0 1Z 01
Rotation x[30 v o z0 |
Scale X[1 l¥[1 |z |1
v rite R Y
Sprite .-.shadow_character
Color
Flip Ox Oy
Material | @ Sprites-Default)
Draw Mode | simple m
Sorting Layer [Default 4]
P — — 1

Create another empty child of the EnemyRobot, and this time name it RobotAnimator.
Reset its Transform and add an Animator component to it.

S e I
[RobotAnimator | [Static ¥
Tag [Untagged :] Layer[Default :]
» .~ Transform @ 5
v 35 ¥ Animator @ = %
Controller [None (Runtime Animator Cor ©
Avatar 'None (Avatar)]
Apply Root Motion []
Update Mode | Normal ™
Culling Mode [Always Animate ™
Clip Count: 0
Curves Pos: 0 Quat: 0 Euler: 0 Scale: 0 Muscles: 0 Generic:
0 PPtr: 0
Curves Count: 0 Constant: 0 (0.0%) Dense: 0 (0.0%) Stream:
0 (0.0%)

Create an empty GameObject named EnemyBody and make it a child of
RobotAnimator. Reset its Transform and set its Rotation to (X:30, Y:0, Z:0).Add a
SpriteRenderer to it and set robot_base_idle_00 as its initial sprite value.

© Inspector
¥ EnemyBody | [] Static ¥
Tag | Untagged ¢ | Layer| Default N
¥ .~ Transform i
Position X0 YO ZO0
Rotation X 30 Yo 'zo
Scale x[1 _Jy[1 |z[1
v (@l rite Renderer 5 %,
Sprite .-.robot_base_idle_00 :
Color
Flip Ox Oy
Material | Sprites-Default)
Draw Mode | simple ™
Sorting Layer | Default ™
Order in Layer 0 |
Mask Interaction [None ™
Sprites-Default [%=,
> Shader | Sprites/Default v

Add two more children to RobotAnimator named EnemySmoke and EnemyBelt. Use
the same settings as with EnemyBody, except set the initial sprite values to
robot_smoke_idle_00 and robot_belt_idle_00, respectively.

Set the Position of EnemyBelt to (X:0, Y:0.004, Z:-0.006).

Your EnemyRobot hierarchy should look like this:

¥ EnemyRobot
ShadowCharacter
¥ RobotAnimator
EnemyBody
EnemySmoke
EnemyBelt

Check the Scene view to confirm the robot is correctly assembled and standing in front
of the hero.

\‘-— W

@\\\\ \\\x\\\\‘

You’re done setting up the robot’s required GameObjects! It’s time to dig into some
scripting.

Open the Actor script. Add the following variable to the top of the class:

public SpriteRenderer baseSprite;
This adds a reference to the baseSprite of any instance of the Actor class.

As explained during the refactoring exercise in the last chapter, the robot will inherit
from the Actor class, so capabilities available to the hero are also available to the
robots.

Save the Actor script and return to Unity. Create a new C# script in Assets/Scripts
named Robot — this will be the code “heart” of the robot, and ultimately, what
differentiates the good guy from a bad guy.

Open the Robot.cs and remove the default Start and Update methods. Set Actor as its
superclass. It should look like the class below. Note the public class Robot : Actor
{ line:

using System.Collections;
using UnityEngine;

public class Robot : Actor {
b

Save the script and return to Unity. For the moment, disregard the fact that the Robot
class is empty. You’ll come back to it in future chapters to add more.

K

Add a Robot, Box Collider and Rigidbody component to EnemyRobot. For the Box
Collider, set the Center to (X:0, Y:1, Z:0) and Size to (X:1, Y:2, Z:0.6).Inits
RigidBody, expand Constraints and check all the axes under Freeze Rotation.

© Inspector
¥ EnemyRobot | [] Static ¥
Tag | Untagged 4| Layer| Default N
b .~ Transform @ =
» = ¥ Robot (Script) S
v i ¥ Box Collider @ 3 %
Edit Collider
Is Trigger -
Material 'None (Physic Material) o]
Center
X0 J¥[2 1zlo
Size
v /. Rigidbody Q@ 3
Mass (1]
Drag 0]
Angular Drag 10.05 |
Use Gravity 4
Is Kinematic -
Interpolate [None

|

Collision Detection | Discrete
¥ Constrain
|Freeze Position [X [Y [] Z|
Freeze Rotation X Y 74

You need to set the property references. Set RobotAnimator as the Base Anim,
EnemyRobot as the Body, ShadowCharacter as the Shadow Sprite, and EnemyBody
as the Base Sprite.

= Hierarchy : © Inspector
v eern .
| Create - | (GrAl 4 [EnemyRobot | [static ¥
¥ € Game* = Tag | L d 4 | Layer| Default |
» MyHero 9 = ¥
» Mapl b .~ Transform @ =
» ameManager / Robot (Script) @ 3 %
EnemyRobot . Robot o
vzh;:tt)fiharacter : ‘ $2 RobotAnimator (Animator) = ©f
| ¥ RobotAnimator|
2 - ;:’to . EnemyRobot (Rigidbody) of
EnemySmoke Shadow Sprite = ShadowCharacter (Sprite Ren| G
EnemyBelt Speed 2 |
Is Grounded -
Base Sprite =, EnemyBody (Sprite Renderer) ©
» i [¥ Box Collider @ = #
> - Rigidbody FER
[Add Component]

The animator controller needs to be set. In the Assets/Animation/Robots folder,
create a new Animator Controller named robot_anim_controller. Double-click it to
open the Animator window.

Add an IsGrounded Boolean parameter to the animator, which is necessary because
the Actor superclass requires IsGrounded to determine if an actor is in the air.

[Layers H Parameters \ =
(arName +
= IsGrounded (]

Drag the robot_idle_anim clip to the Animator window and rename it idle. When the
robot does absolutely nothing, this animation will play.

/
/
/

1

robot_hurt_anim robot_idle_anim robot_knockout_an...

Select RobotAnimator and assign robot_anim_controller to its Controller field.

Run the game and look at that smoldering little hunk of metal: That’s an animated
robot! Try punching. Try harder!!

Just kidding, it doesn’t matter how hard you try because you’ve not set up the logic to
make that hit do much. However, the robot doesn’t mind if you push it around a bit.

But wait, didn’t you put a collider in place to allow for a good, solid punch? You did, but
clearly, that wasn’t enough. You’ll address that later.

There’s a more immediate problem. The robot’s box collider can interact with the hero’s
collider, making it possible for the bots to gang up on the hero and box him in. Who
knows what they’ll do with their powers.

K

onkgy =

T
D AN\

Layers are how you’ll correct this suspicious behavior. Broadly speaking, layers set
which objects can collide with each other in the physics settings.

N

Layers

Layering is how you isolate physics collisions and control exactly what can collide with
what. For example, a robot should never harm a fellow robot; it should only be able to
damage the hero.

You’ll create the following layers:

» Friendly: Contains the layers of the hero and his body collider — this layer can’t
collide with another friendly or an enemy.

« Enemy: Contains all the enemy layers ranging from robots to a big baddie boss —
enemies can’t collide with friendly, enemy or playerblocker layers.

e Detector: Contains all the attack colliders and unit detectors — it will collide with
the friendly and enemy layers.

» Wall: The layer that includes the floors and walls — it detects collisions with the
friendly and enemy layers.

» PlayerBlocker: A special layer made just for the player — it’s similar to the walls
layer, except that enemy actors can pass through it.

K

To create these layers, go to Edit \ Project Settings \ Tags and Layers in the top
menu.

StEp Lol

Sign in...

Selection >

Droie otting Input

)) 0] gl U aye

Graphics Emulaflon > Audio

Network Emulation > Time

Snap Settings... e
Physics
Physics 2D
Quality
Graphics
Network

In the layers drop-down, go down to Layer 8 and add the Friendly, Enemy, Detector,
Wall and PlayerBlocker layers, like this:

© Inspector
*j} Tags & Layers @ = % 2
» Tags
¥ Sorting Layers
¥ Layers
‘ Builtin Layer O Default
Builtin Layer 1 TransparentFX
Builtin Layer 2 Ignore Raycast
Builtin Layer 3
Builtin Layer 4 ‘Water
Builtin Layer 5 ul

Builtin Layer 6

Builtin Layer 7

User Layer 8 |Friendly
User Layer 9 |Enemy

User Layer 10 |Detector
User Layer 11 [wall

User Layer 12 |PlayerBlocker

User Layer 13
User Layer 14 [|

lcorlavor 15 [1

Open the Physics manager by selecting Edit \ Project Settings \ Physics. You’ll be
greeted by the Layer Collision Matrix.

K

As you can see, it shows all the layers as rows and columns. When you want a layer to
collide with another layer, just check the box where their row and column intersect. If
you don’t want them to collide, just uncheck the appropriate box.

Set up the collisions according to these rules:

» Friendly can’t collide with Friendly and Enemy.

« Enemy can’t collide with Friendly, Enemy and PlayerBlocker.
» Detector can’t collide with PlayerBlocker, Wall and Detector.
» Walls can only collide with Friendly and Enemy.

» PlayerBlockers can only collide with Friendly.

Your Collision Matrix should look like this:

V¥ Layer Collision Matrix

A»jdo|giaie|d
Awau3z
Ajpuatiy

11em
1012313Q

c
Default[][] ™
TransparentFX][]
Ignore Raycast [][]
Wwater][]
uO0MMM
Friendly oo
Enemy [] J
Detector [[][]
wall][]
PlayerBlocker [_]

[€]aseaAey aioub)

[<] 123EM,
[« [€] x41ua.edsuea)
Klanejea

Good work. Close that, select any GameObject and find the Layer property at the top-
left of the Inspector, next to the Tag property. Here you’ll edit the layers each
GameObject belongs to.

Select MyHero and change the Layer to Friendly.

© mspector [
[« ‘MyHero | [] static ¥
Tag [Untagged t) Layer v 0: Default)
» 0 Transform 1: TransparentFX
7] 2: Ignore Raycast
o Hero (Script) 4: Water
Script + Hero) 5: Ul
Base Anim % HeroAnimator 8: Friendly
Body A MyHero (Rigidb ™ 9: Enemy
ey
Shadow Sprite ‘= ShadowCharac 10: Detector
Speed 2 11: Wall
Is Grounded O 12: PlayerBlocker
Base Sprite None (Sprite Rend .+ Layer.
Walk Speed 2 .
Run Speed 5
Can Run 4

You’ll get a prompt that asks if you want to change layers for the child objects. Select
Yes, Change Children.

Change Layer

Do you want to set layer to Friendly for all child objects as well?

<

Select AttackCollider, the child of HeroAnimator, and change its Layer to Detector.

Yes, change children

No, this object only Cancel

© Inspector
[AttackCollider | [] Static ¥
Tag | Untagged 4| Layed[Detector |
¥ .~ Transform @ = %
Position X0 'y'o ‘zlo]
Rotation X 0 Y 0 1Z0 |
Scale X |1 ¥ [1 |z [1 |

Select all the children of Map1 \ Colliders and set their Layer to Wall.

= Hierarchy © Inspector
«| AT) .
G @ EES
me =
» MyHero Tag[uUntagged ¢ layer v 0:Default p
¥ Mapl » .~ Transform 12: ‘lrranspz;remFxt
: Ignore Raycas!
» TileMaps » .. Cube (Mesh Filter) r vg\Iater v
VCoS » ¢ [¥/ Box Collider 5: Ul
Back » ... [[] Mesh Renderer 8: Friendly
9: Enem
Front Default-Material 10: Detezmr
nge > Shader | Standard
ameManager
GameObject] 12:PlayerBlocker
» EnemyRobot [Add Component A i
|

Select the LeftCamBounds and RightCamBounds objects under MyGameManager and
set their Layer to PlayerBlocker.

K

= Hierarchy © Inspector

@)
e 2@ @rC E—[E
» MyHero — Tag [Untagged +] Layer| v 0: Default J

1: TransparentFX

. MaMpr1 SN g 13 2: Ignore Raycast
v O ST » .. Cube (Mesh Filter) 4: Water
MainCamera N .
»> Box Collider .
LeftCamBounds 9(g 5: UI'
RightCamBounds » [\ LI Mesh Renderer : :nendly
- : Enem
ezl ’ Default-Material = De(e’émr r,
» EnemyRobot - 1 .
> Shader | Standard | 1: wall U

12: PlayerBlocker
[Add ComponentJ Add L
| ayer...

Finally, select EnemyRobot and change its Layer to Enemy. When prompted, select
Yes, Change Children.

|| = Hierarchy = = | © Inspector
| chzjne*(<m—?§ 9 (¥ EnemyRobot | O static ¥
» MyHero Tag[uUntagged #] Laj v 0: Default
» Mapl Y. Transform ; 'Il‘ransparentFX
MyCameManage Position x 15 : Ignore Raycast
En=my ROk Rotation x[0 il
ShadowCharacter Scale X[2 ;Jrliend]
¥ RobotAnimator 2
EnemyBody v = (¥ Robot (Script) %
EnemySmoke Script + Robot : Detector
EnemyBelt Base Anim 2= RobotA 11: Wall
Body L EnemyR| 12: PlayerBlocker
Shadow Sprite l'Shadowl paqg Layer...
Speed 2 —i
Is Grounded O
Base Sprite | . EnemyBody (Sprite Rendere| ©
» i ¥ Box Collider o3
» . Rigidbody S
L 1

Run the game now and take a run at the enemy to test what you just set up. Like a ghost
passes through walls, the hero should be able to pass through the robot. And with that,
you’ve quashed the robot conspiracy to corner and suppress the hero.

Next up, attack collisions!

Attacking step one: detection

Whenever an actor attacks, be it a hero or a robot, a box collider checks whether it hit
anything.

Unity provides callbacks to these methods when there’s a collision between two
colliders with rigidbodies: OnCollisionEnter and OnCollisionExit. In your scenario,
however, these won’t work because colliders automatically push other colliders outside
the bounds of their attack boxes.

The following image demonstrates how the Inspector looks if the HeroAnimator’s box
collider, aka AttackCollider, is not set as a trigger. See the effect for yourself by

K

unchecking Is Trigger under the Box Collider section. Run the game and observe what

happens when you punch the robot.

© Inspector | =
‘AttackCollider |] Static ¥
Tag | Untagged ¢ | Layer| Detector : |
» .~ Transform &,
» ... Cube (Mesh Filter) %,
v i [Box Collider ¥,
Edit Collider
Is Trigger
Material 'None (Physic Material) | o
Center X 0 Y 0 'z 0]
Size X1 ¥ |1 |z |1 |

It’s displaced by the box collider. Remember to recheck Is Trigger when you’re done
bullying that hunk of junk!

In the image below, the first frame shows a collision in progress, while the second
shows the physics engine doesn’t allow colliders to overlap. On the top, you see the
game view. Below, the scene view that shows the colliders.

Game View Game View

*}gz .
.5

B 2P

NNV

N\
&

Frame 2

There’s another way to detect the collision and apply collision forces — trigger colliders,
which help a collider detect when another collider is inside its bounds. These colliders
also allow the game to apply custom forces after detecting hits.

The built-in methods for handling triggers events are OnTriggerEnter() and
OnTriggerExit (), but they have a minor limitation.

Similar to the HeroCallback class, AttackCollider contains attack trigger colliders that
receive OnTrigger events. Without some help from you, the Hero script won’t be able to
determine if a hit happened. To resolve this, you’ll need to implement another

“forwarder” class, which is a simple class that informs the Actor class of a trigger event.

Create a new C# script in the Scripts folder named HitForwarder. Replace its contents
with the following:

using UnityEngine;
public class HitForwarder : MonoBehaviour {

//1
public Actor actor;
public Collider triggerCollider;

//2
void OnTriggerEnter(Collider hitCollider) {
Vector3 direction = new Vector3(hitCollider.transform.position.x -
actor.transform.position.x, @, 0);
direction.Normalize();

BoxCollider collider = triggerCollider as BoxCollider;
Vector3 centerPoint = this.transform.position;
if (collider) {

centerPoint = transform.TransformPoint(collider.center);

b

Vector3 startPoint = hitCollider.ClosestPointOnBounds(centerPoint);
actor.DidHitObject(hitCollider, startPoint, direction);

1. This class starts with declarations for the properties. The script requires a reference
to the Actor it’s checking trigger events for, and the triggerCollider that receives
the trigger event.

2. OnTriggerEnter is a native Unity method for handling trigger events. Because
trigger events don’t store information about collider overlaps, you use this method
to estimate where collisions happen. ClosestPointOnBounds () from the overlapping
collider calls the actor’s DidHitObject method with the hitCollider that engaged
the trigger, estimated startPoint of collision, and direction of the collision.

Next, open the Actor script and add the following methods inside the Actor class:

//1
public virtual void DidHitObject(Collider collider, Vector3 hitPoint,

Vector3 hitVector) {
Actor actor = collider.GetComponent<Actor>();
if (actor '= null) {
if (collider.attachedRigidbody != null) {
HitActor(actor, hitPoint, hitVector);
+
+
}

//2
protected virtual void HitActor(Actor actor, Vector3 hitPoint, Vector3

hitVector) {
Debug.Log(gameObject.name + " HIT " + actor.gameObject.name);

1. DidHitObject handles what happens when an actor hits another object that has a
collider. First, the method checks if the hit object contains an Actor component. If
yes, it registers a hit via HitActor.

2. HitActor contains instructions for what an actor should do when it hits another
actor. For now, it contains placeholder code that writes to the console whenever a
hit is detected.

Save the scripts, return to Unity and add a HitForwarder component to the
HeroAnimator's AttackCollider. Set Actor to MyHero and Trigger Collider to
AttackCollider.

= Hierarchy = -= | © Inspector o =
| Create -| (oAl ['i ['AttackCollider [] Static ¥

¥ € Game* =l B . -
Nisasl Tag | Untagged 4 | Layer| Detector 3
¥ HeroAnimator » _~ Transform il
HeroSprite > Box Collider S
AttackCollider ¥ o HI arder (Script) —] -
ShadowCharacter . HitForwarder o

> Mapl

R R e e Actor « MyHero (Hero) o|
» EnemyRobot Trigger Collide W AttackCollider (Box Collider. ©f

Run the game. Walk up to the robot and start punching. Although it doesn’t look like
much is happening, the hero is delivering hits. Check the Console window for the
following output:

El console

L Collapse | Clear on Play | Error Pause
@ MyHero HIT EnemyRobot
UnityEngine.Debug:Log(Object)

@ MyHero HIT EnemyRobot
UnityEngine.Debug:Log(Object)

Ok great! Now you’ve got the hits wired up in the backend. You’re ready to add the
robot’s reaction!

Attacking step two: dying

When a robot takes a hit, it should look injured. You can animate this effect in a number
of ways, including the old classic fall-over-and-die. Nothing says “You did something
awesome!” like a one-hit KO.

Hit reaction and robot death

By the time you’re done with the game, every actor will have a death animation that’s
triggered when it’s life value drops to zero. For now, however, you’ll trigger the robot
death sequence whenever it takes a hit.

Another classic beat-em-up death effect is when the dead character repeatedly flickers
then vanishes. You’ll also implement this effect in Pompadroid.

Open the Animator window by double-clicking robot_anim_controller. Drag
robot_knockout_anim into the Animator and rename it knockout.

Animation/Robots (robot_anim_controller.control

4 Assets » Animation » Robots /
robot_anim_control... robot_hurt_anim robot_idle_anim robot_knockout_an...

Add a new Boolean event parameter named IsAlive, which will determine if this robot
is still alive and kicking. Check IsAlive in the parameters pane to set its default value to

true.
#2 Animator
I Layers H Parameters i -]
(arName DR
u

= IsGrounded

Add a new transition from Any State to knockout.

Select the transition. Disable Fixed Duration and set Transition Duration to 0.
Uncheck Can Transition to Self to disable the animation’s ability to call itself
whenever the Actor is dead. Add a new condition of IsAlive and set it to false.

© Inspector

&% AnyState -> knockout o
Wss 1 AnimatorTransitionBase

Transitions Solo Mute
® | PR
Wss AnyState -> knockout

Has Exit Time O

W Settings

Fixed Duration

Transition Duration (%) |
Transition Offset 0 |
Interruption Source [None 3]
Ordered Interruption M

Can Transition To Self []

o =]
¥=]

Preview source state [idle al

:00 0:05 0:244 0:15 0:20

Conditions

= |IsAlive [~] | false 4]

Any State is a special state that can be transitioned to from other states. It’s a useful
feature when you need a state that can interrupt other states, for instance, when there’s
a death. In this case, the actor shouldn’t finish its current animation; rather, it should
proceed directly to its death state.

Note: You might wonder why you named the death animation knockout. You’re
using the same base animation for falling down and death. The difference is
simple: when the robot takes some damage, it’ll fall and get back up. But when it
dies, it never gets back up.

The animation state is now complete. Open Actor.cs and add this variable to the top:

public bool isAlive = true;

K

This Boolean contains the current status of the actor; this value will be set to false
when the actor is dead.

Replace the Debug. Log line in HitActor() with this:

actor.Die();
This tells the Actor class that the receiver of the punch should die when hit.
Add the following methods to the class:

//1

protected virtual void Die() {
isAlive = false;
baseAnim.SetBool("IsAlive", isAlive);
StartCoroutine(DeathFlicker());

}

//2

protected virtual void SetOpacity(float value) {
Color color = baseSprite.color;
color.a = value;
baseSprite.color = color;

//3
private IEnumerator DeathFlicker() {
int i = 5;

while (i > @) {
SetOpacity(0.5f);
yield return new WaitForSeconds(0.1f);
SetOpacity(1.0f);
yield return new WaitForSeconds(0.1f);
1—;

1. Die() kills the actor by setting isAlive to false and playing the death animation clip
by setting the animation clip’s IsAlive boolean parameter to false.

2. SetOpacity() is a helper method that changes the opacity of the actor’s sprite. You
use it to create a flickering effect when an actor dies.

3. DeathFlicker() toggles the hero’s sprite opacity between partially transparent and
opaque. It changes the actor’s baseSprite to 50% opaque for 0.1 seconds, then to
100% opaque for another 0.1 seconds. By repeating this five times, you get a flicker
effect.

Save the scripts and return to Unity. Run the game and start punching. One measly
punch sends the robot to the floor! The robot’s sprite will flicker as it falls to the ground
to signify death.

K

DeathFlicker() is a coroutine, which is a special kind of method that’s created like any
other, but it has a return type of IEnumerator. It can also contain multiple yield return
statements. For example, yield return new WaitForSeconds(0.1f) that waits 0.1
seconds before continuing the method. Coroutines are invoked from the
StartCoroutine() method.

Coroutines are helpful when programming time-sensitive events, such as the death
flicker effect. They have the ability to pause and resume at a later time. For example,
consider these two code blocks:

private void RegularMethod()

{
Debug.Log("Print me first");
Debug.Log("Print me second");

}

private IEnumerator CoroutineMethod()

{
Debug.Log("Print me first");
yield return new WaitForSeconds(1.0f);
Debug.Log("Print me second");

}

If you ran these two methods by calling RegularMethod() and
StartCoroutine(CoroutineMethod()), you’d notice one logs both messages at once,
while the other takes a brief pause between.

In RegularMethod (), both Print me first and Print me second appear when the
RegularMethod is called. But with CoroutineMethod(), Print me first appears
immediately after the StartCoroutine() invocation, and Print me second appears one
second afterward.

RegularMethod()

1
[console
| Clear | | Collapse | Clear on Play | Error Pause |

Print me first
UnityEngine.Debug:Log(Object)

[Console
| Clear | | Collapse | Clear on Play | Error Pause |
Print me first

Print me second i i i 5
UnityEngine.Debug:Log(Object) UnityEngine.Debug:Log(Object)

Print me second
UnityEngine.Debug:Log(Object)

StartCoroutine(CoroutineMethod())
1

El console 1
| Clear l lCnIlapse] Clear on Play | Error Pause 1
1

Print me first

UnityEngine.Debug:Log(Object)
Bl console
|Clur I 'Cnllapse] Clear on Play | Error Pause

Print me first
UnityEngine.Debug:Log(Object)
Print me second
UnityEngine.Debug:Log(Object)

0 I
Time(in seconds)

Coroutines make programming certain game features so much easier!

Robots need life too

Soon, the glee you feel from taking out droids with one hit will wear off — maybe not
yet, but soon. As such, the next step is giving the robot a life value, aka health so that it
can stand up to the hero’s abuse.

The Robot and Hero classes share a common life value. Eventually, you’ll configure the
game so that a hit depletes the value incrementally, and the actor dies when the value
is 0.

Since they share this trait, you can add the life parameter to the Actor superclass.
Open Actor.cs and add the following lines to the variable declaration:

public float maxLife = 100.0f;
public float currentLife = 100.0f;

» maxLife defines the maximum value of the actor’s life.

e currentLife is the instance’s current life value.

Being that they are public, you can adjust these properties in the Inspector.
Add this Start method to Actor.cs:

protected virtual void Start() {
currentLife = maxLife;
isAlive = true;
baseAnim.SetBool("IsAlive", isAlive);

K

}

When Start() is called at the beginning of the game, currentLife is set to the maxLife
value and the IsAlive animation parameter is initialized.

Note the presence of the access modifier protected, which means only derived classes
can access this method. You also have the virtual keyword so that derived classes, such
as Robot and Hero, can override this method.

Still in Actor.cs, add this method:

public virtual void TakeDamage(float value, Vector3 hitVector) {

//1

FlipSprite(hitVector.x > 0);

currentLife —-= value;

//2

if (isAlive && currentlLife <= 0) {
Die();

h

}

Here you have a shiny, new TakeDamage method that handles what happens when an
actor sustains damage.

1. FlipSprite makes the actor face the direction from whence the damage came.

2. The if statement evaluates currentLife, and when that value reaches 0, it triggers
the actor’s Die method.

Open Actor.cs again, and replace the contents of HitActor with this line:
actor.TakeDamage(10, hitVector);

When an actor’s collider receives a punch, its currentLife property is reduced by 10
points.

Save the script, return to the editor and run the game. Go punch a droid! Watch the
EnemyRobot Inspector every time you punch the robot to watch its life go down.

Keep punching till you’ve reduced its life to @ and then keep hitting it. That’s right,
show that droid who’s boss!

You’ll see a warning in the Console regarding a missing IsAlive parameter in the hero’s
animator controller. Ignore it — you’ll add it in a future chapter.

©

e T l e o]

Parameter 'IsAlive’ does not exist.
UnityEngine.Animator:SetBool(String, Boolean)

While you were punching that poor old metallic carcass, you might have noticed the
robot took damage even after it died. Uh-oh! That’s a bug you need to fix.

L
D

I ’ — 1 w ™ [EnemyRobot 1 [static ¥
Tag|Untagged ¢] Layer|Enemy]

m El

Add the following method to Actor.cs:

public bool CanBeHit() {
return isAlive;

by

This method returns a Boolean to determine if the actor can be hit. If the actor isn’t
alive, then it can’t get hurt anymore. You’ll see this again in later chapters.

There’s one more line to modify. Find DidHitObject and locate if (actor != null)
{ inside of it. Change it to:

if (actor != null && actor.CanBeHit()) {
This determines if an actor can be hit before applying damage.

Save the script and return to Unity. Save your scene and run the game, again punching
that droid into oblivion. Its life should not continue to reduce after death because now
it can only take a hit when it’s alive.

Everybody hurts sometimes

Great! You’ve made a stronger droid that takes multiple punches. However, the robot is
remarkably stoic while he’s getting pummeled.

K

Adding a flinch animation will make hitting the actor more satisfying, giving the player
a visual cue that they’re doing something.

Open the Animator window that has robot_anim_controller loaded. Drag
robot_hurt_anim in to create a new state and rename it to hurt.

Animation/Robots/robot_anim_controller.contro

bot_hurt_anim robot_idle_anim robot_knockout_an...

Add a new trigger parameter named IsHurt. You’ll use this parameter to trigger the
robot’s flinch animation.

®% Animator [€ Game]

l Layers H Parameters I »
(arName DR

= IsAlive

= IsHurt Q

Hurt state is an animation that will show the robot flinching when it takes damage.

Add a transition from Any State to the hurt state.

Select the transition. Uncheck Has Exit Time and Fixed Duration. Set Transition
Duration to 0. Add a new condition with the IsHurt trigger parameter.

Keeping Can Transition to Self checked allows the hurt animation to transition to
itself, so the robot can be hurt (again) while being hurt. Make sense?

© Inspector

&% AnyState -> hurt @ = =
W= 1 AnimatorTransitionBase

Transitions Solo Mute
- T »
W AnyState -> hurt

Has Exit Time O
¥ Settings
Exit Time [0.9
Fixed Duration | |
Transition Duration (%) 0
Transition Offset 0
Interruption Source | None 3]

Ordered Interruption [V
Can Transition To Self

Preview source state [idle 2]

Conditions

= [IsHurt 1=

1 + -

Add another transition from hurt to idle. This one should only transition when hurt
finishes, so keep Has Exit Time selected, uncheck Fixed Duration and set Transition
Duration to 0.

K

© Inspector

= hurt -> idle e
%= 1 AnimatorTransitionBase

Transitions Solo Mute
- @ %

== hurt-> idle

Has Exit Time (v

¥ Settings
Exit Time 0
Fixed Duration
Transition Duration (%) 0
Transition Offset 0
Interruption Source | None ™

Ordered Interruption

Conditions

[List is Empty
+ -

Your last act in this chapter is to update the Actor script.

Open Actor.cs. Find the TakeDamage method and replace it with the following:

public virtual void TakeDamage(float value, Vector3 hitVector) {
FlipSprite(hitVector.x > 0);
currentLife —= value;

K

if (isAlive && currentLife <= 0) {
Die();

} else {
baseAnim.SetTrigger("IsHurt");

s

You added an else condition that tells the Actor that if the damage isn't enough to
cause death, then it should just play the hurt animation.

Save the script, run the game and punch that droid! Beating metal was never so
satisfying — or so easy on your knuckles.

A==y

Where to go from here?

Congratulations! You’ve gotten a lot done in this chapter. When you started, the hero
was on a lonesome walkabout in his little world, but now he has a buddy that’s begging
for a bashing!

Up to this point, you’ve:

» Added a punching bag — I mean robot — to the scene.

» Created and used layers to manage collisions in the physics engine.
» Gave life to a robot, and then took it back with a few punches.

» Created a timed flickering event to signify death by using Coroutines.

K

» Added a hurt animation to show when the poor robot has taken a hit.

With the foundation for the robot in place, you’re ready to introduce more features to
this crucial actor!

In the next chapter, you’ll make the robots into sentient beings. They’ll learn how to
move and attack and be the brainiest bots you have ever faced!

Chapter 6: Brainy Bots

Right now you have a hero with a powerful punch and droids without any smarts —
they’re just standing there waiting to take a pummeling. By the end of this chapter,
you’ll have bots with brains that seek and destroy the hero.

This chapter will cover the following topics:

Animating the robots’ walk and attack actions.

Using navigation mesh pathfinding to teach the robots how to navigate the map.
Writing decision-based Al to the robots.

Using tags to identify specific GameObjects.

Implementing life value for the hero character, thereby making the game a fight for
survival!

h raywenderlich.com 201

You can punch that poor robot until it falls down! It never retaliates. Where’s the fun in
that?

Although punching a helpless robot may bring you some short term joy, a game worth
playing is challenging. Usually, you see smart opponents or horrendous obstacles or
puzzles — maybe all of the above and then some.

This game is sorely lacking in competitive spirit, so you’ll make each robot move
similarly to a player, albeit a lesser-skilled player.

In this section, you’ll retrofit the robots with brains to help them decide what to do in
every situation — decision-based Al. You’ll give each robot the ability to choose a
course of action at specific time intervals.

Before teaching the robot complex behavior logic, you need to set up the basic actions
that the Al will command the robot to do. The robot must be able to:

1. Idle

2. Attack and punch

3. Chase the hero and roam around

You’ve already made the idle state the robot’s default, so that part is done.

The second action resembles the hero’s punch, so you’ll implement it in a similar way.
The last action is the most challenging because it requires pathfinding for the droid to
determine how to move towards the hero’s position.

First, you must teach the robot to punch.

Start by importing Robots Attack Animation.unitypackage from the Unity Packages
folder. It contains the robot_attack _anim clip and sprites.

Similarly to the hero, the robot needs a trigger collider to determine when its attack
connects. A box collider does this job nicely.

Open the Game scene, add a new empty GameObject named AttackCollider, set its
parent to RobotAnimator, the child of EnemyRobot then reset its Transform. Finally,
change its layer to Detector.

K

¥ EnemyRobot
ShadowCharacter
¥ RobotAnimator
EnemyBody
EnemySmoke
EnemyBelt
| AttackCollider |

Add a new Box Collider to AttackCollider. Disable it and check Is Trigger. Also attach
a HitForwarder component to it, set Actor to EnemyRobot and Trigger Collider to
AttackCollider.

© Inspector 3 =

AttackCollider | [] Static ¥
Tag | Untagged + | Layer| Detector s
b~ Transform [= %
s [Box Collider lal = %
I Fa® | Edit Collider
Is Trigger m
Material 'None (Physic Material) C
Center
X0 Y0 1z0 |
Size
X1 [Y[1 [Z[1 |
¥ = Hit Forwarder (Script) @ = =
Script + HitForwarder (o]
Actor « EnemyRobot (Robot)
Trigger Collider i\ AttackCollider (Box Collider

Next, double-click robot_anim_controller in the Assets/Animation/Robots folder to
open the Animator window. Drag robot_attack_anim from the folder to the grid layout
to create a new state. Name it attack.

Animation/R]

3 Project
| create -

Vﬁ Favorites Assets » Animation » Robot:
@AII Materials

©\ All Models
(©1 All prefabs
©L All Scripts r/:

v &5 Assets

¥ & Animation
Hero robot_anim_control... § robot_attack_anim

—

Add a new trigger parameter named Attack, which you’ll use to trigger the robot’s
punch animation. This time, you need only one variable for attacking since it only
throws a single punch, unlike the hero who later on will be able to deliver a flurry of

robot_hurt_anim robot_idle_anim robot_knockout_an...

punch combinations.

#2 Animator

I Layers H Parameters l k-

(arName DK -
= IsGrounded o
= IsAlive 4
o

= IsHurt

Next, add a transition from idle to attack. Uncheck Has Exit Time and Fixed
Duration, set Transition Duration to 0 then add a new condition with the Attack

trigger being the parameter.

Transitions Solo Mute

o —————

- [|
== jdle -> attack

[Has Exit Time =]
W Settings
Exit Time 0.4
Fixed Duration -
Transition Duratior
Transition Offset 0
Interruption Sourc None]
Ordered Interrupticlv/
@00 By0S 0:10

Next, add another transition from attack to idle. Keep Has Exit Time checked and set
Exit Time to 1. Uncheck Fixed Duration and set Transition Duration to 0.

Transitions Solo Mute

R N

- | %
== attack -> idle

IHas Exit Time ¥4 I
¥ Settings
| Exit Time 1

Fixed Duration [|
Transition Duratior 0 |
Transition Offset |0
Interruption Source None 3]

Ordered Interrupticy/

Conditions
List is Empty

Since the Actor script uses the Attack() method that sets the attack trigger on its
animator, you don’t need to add code to enable the robot’s attack.

K

If that hunk of metal had controls, you could make it punch the hero and possibly,

displace that perfect pompadour. But droids don’t get controls because you’ll make
them sentient soon. I’m sorry to say there will be no pompadour poundings at this
point.

Next up, you’ll teach the robot how to walk.

Robot baby steps

It might seem like a trivial affair, but these droids need to be able to navigate their
world. Antagonists should have pathfinding abilities when there are obstacles in a
game. Pathfinding allows robots to smartly navigate around obstacles towards the hero
instead of getting stuck on walls or behind trash bins.

To achieve this, you’ll put Unity’s navigation system to good use.

NavMeshes 101

Unity uses Navigation Meshes for pathfinding. Navigation Meshes, or NavMeshes,
are data structures that define where entities can go. NavMeshes also determine how an
entity gets from point A to point B, and whether B is even reachable. In the image
below, the light blue mesh represents the NavMesh on top of the game terrain.

Beat ’Em Up Game Starter Kit Chapter 6: Brainy Bots

NavMeshAgents

Off-mesh link
NavMesh

The NavMesh entities are called NavMeshAgents. They represent objects that can
navigate the NavMesh to get from point A to point B. They also check if they can fit
through the path available, avoiding impossible overhangs and narrow doorways where
they might encounter clearance problems. NavMeshAgents use cylinders to represent
their location on the NavMesh.

In the image below, the agent on the right can pass underneath the overhang, but the
agent on the left cannot because it’s too tall.

Off-Mesh Links are shortcuts that allow you to specify ways to traverse the mesh
faster. A common use case is a bridge gap that’s impossible to represent in a NavMesh.

h raywenderlich.com 207

Beat ’Em Up Game Starter Kit Chapter 6: Brainy Bots

Another is jumping over ridges and down ledges.

Other features of interest are NavMeshObstacles. These entities can modify the
NavMesh and don’t allow pathfinding in the spaces they occupy so that nobody will get
stuck on them. The use case for this game is when you add obstacles to the map in a
later chapter, such as a powerup-containing garbage can.

Notice how the red box cuts away the NavMesh, disallowing any pathfinding in its

u raywenderlich.com 208

immediate vicinity.

NavMeshes are calculated, or baked, on to geometry in the game. Baking creates the
necessary data structures on the mesh you’ll need for pathfinding.

The Navigation window is used to generate and modify the game’s NavMeshes, and
you’ll find it in the top menu under Window \ Navigation. This window has four tabs:
Agents, Areas, Bake and Object.

The Agents tab stores all possible Agent Types that you defined. These agents store
the radius and height of each agent that will move around the navigation mesh. You can
also define the step height and the maximum slope the agent can move around the

mesh with.
Areas | Bake | Object]
Agent Types
-+ —
R=0.5
0.75 LT
45°

Name 'Humanoid |
Radius 0.5 |
Height 2 |
Step Height 10.75 |
Max Slope O

The Areas tab allows you to define Areas, which are used to specify places that cost
more to navigate to. A use case is creating a “Restricted Area” that allows authorized
agents in but disallows entry for civilian agents.

& Navigation |

006

LYEE Bake [Object]

Name
[] Built-in 0 Walkable
[] Built-in 1 Not Walkable
I:] Built-in 2 Jump

Cost

|:| User 3

|:| User 4

|:| User 5

D User 6

[] User 7

D User 8

D User 9

[1 user10

e | bt | e | e N

The Objects tab allows you to select which meshes or objects will be used to generate
the NavMesh. When you select a GameObject with a MeshRenderer or Terrain
component added to it, you’ll see a few parameters associated with the object.

« Navigation Static: Determines whether to generate a NavMesh for this GameObiject.
» Generate OffMeshLinks: Allows Unity to generate off-mesh links by itself.

» Navigation Area: Lets you specify which Navigation Area to assign this mesh to —

more about this in the Areas tab.

& Navigation |

006

Scene Filter:

GNI |;:'Mesh Renderers gl Terrains

[Agents‘ Areas ‘ Bake m

| Select a MeshRenderer or a Terrain from the scene.

The Bake tab allows you to define the parameters for the agents of your current

NavMesh.

» Radius: Specifies an agent’s width, which could restrict its access to narrow passages

on your NavMesh.

» Height: Sets an agent’s height, which could determine whether it can sneak under

ledges and get through doors.

K

» Max Slope: Determines the steepest angle, expressed in degrees, the agent can
handle.

» Step Height: Defines the height the agent can automatically walk up to, for example,
going up a flight of stairs.

» Generated Off Mesh Links: Sets the drop height at which the mesh will generate
an off-mesh link.

» Jump Distance: Defines the maximum distance an actor can jump.

¢ Navigation | oovg
[Agents I Areas B:FEUG
Learn instead about the component workflow.
Baked Agent Size
R=0.5
=
H=2
0.4
I 45°

Agent Radius 0.5

Agent Height 2

Max Slope 9 45
Step Height 0.4
Generated Off Mesh Links

Drop Height 0
Jump Distance 0

b Advanced

[Clear] [Bake]

At the bottom of the Bake tab are two buttons. Clear removes the current NavMesh on
the selected MeshRenderer or Terrain, and Bake generates the NavMesh that will be
used by agents in that mesh.

[Clear] [Bake]

Okay, now it’s time to make your very own NavMesh!

NavMesh for the Al

Open the Navigation window — it’s in the top menu under Window \ Navigation.

Lighting
Occlusion Culling
Frame Debugger

Navigation

Console {0 ¥8C

You’ll create the NavMesh for Pompadroid with the Floor’s MeshRenderer under Map1
\ Colliders GameODbject.

However, you have a small problem to overcome: The navigation mesh requires an
active mesh renderer to calculate the mesh. The Floor has a disabled MeshRenderer
because the game doesn’t need to display the 3D floor; it only uses it for physics
calculations.

Enable the Floor’s MeshRenderer in the Inspector and set its Materials to @ to activate
the MeshRenderer without drawing it on the screen. Also check Static at the top of the
Inspector, which is a requirement because your calculations are based on static objects
in the scene.

© inspecior [

9 ¥ Floor

Tag | Untagged + | Layer| wall s

b .~ Transform @ = %
> Cube (Mesh Filter) e
- ¥ Mesh Renderer @ = %

¥ Lighting
Light Probes [Blend Probes
Reflection Probes | Blend Probes
Anchor Override None (Transform)
Cast Shadows [on
Receive Shadows [/
Motion Vectors | Per Object Motion
Lightmap Static [+

Lightmapping settings are currently disabled. Enable
@ Baked Global Illumination or Realtime Global
Illumination to display these settings.

-

)

Q |||~

-
—/

“
-

¥ Materials
| size 0
Dynamic Occluded [+
» ¢ [Box Collider L 5

Beat ’Em Up Game Starter Kit Chapter 6: Brainy Bots

Go back to the Navigation window and select the Floor GameObject. In the Object tab,
check Navigation Static. Keep Generate OffMeshLinks unchecked and make sure
NavigationArea is Walkable.

Agents

Agent Types

e

h raywenderlich.com 213

Beat ’Em Up Game Starter Kit Chapter 6: Brainy Bots

Go to the Bake tab, set Agent Radius to 0.2 and keep the default values shown below:

Click the Bake button at the bottom-right of the Navigation window. It’ll create a
ready-to-use NavMesh for the agents of the game. If you have Show NavMesh enabled,
look at the Scene view to see the NavMesh showing as a light blue mesh on top of the
floor.

u raywenderlich.com 214

You’re done creating the NavMesh itself. Both the hero and droids will use it to guide
themselves around obstacles.

Before the droid can make use of the NavMesh, you must attach a NavMeshAgent to it.
Select EnemyRobot and add a NavMeshAgent component to it. Set the Agent Type to
Humanoid, and under the Obstacle Avoidance header, set Radius to 0.2, Height to 2,
Quality to None and Priority to 0.

Beat ’Em Up Game Starter Kit Chapter 6: Brainy Bots

© Inspector

Your new NavMeshAgent will draw a cylinder “collider” of sorts around the
EnemyRobot, which serves as the actor’s personal marker in the NavMesh.

u raywenderlich.com 216

Obstacle Avoidance should be off because it allows robots to walk on top of each other
when navigating the NavMesh. It’s an essential behavior because it enables multiple
enemies to rush the hero.

You tell me what’s more challenging: picking off robots while they stand in line, or
punching your way out of a robot gang. Obviously, the answer is the latter, and that’s
why you turn off Obstacle Avoidance.

I —

Making the robots walk

With the NavMesh in place, the droids will be able to navigate the map. Hence, they’re
ready for a walk animation.

Import Robots Walk Animation.unitypackage, which contains the robot_walk_anim
clip and all the necessary sprites.

Open the Animator window by double-clicking robot_anim_controller in the Assets \
Animation \ Robots folder. Drag the robot_walk_anim clip to the layout area to create
a new animation state and rename it walk.

| Layers || Parameters | ® Base Layer
(GName D+

= IsAlive
= IsHurt

= Attack

Animation/Robots /rbot_anim_controller.controller

Assets » Animation » Robots

|~

rials
s

- B @000 0Qa

robot_anim_control... robot_attack_anim robot_hurt_anim robot_idle_anim robot_knockout_an... robot_walk_anim

Add a new Float event parameter named Speed.

' Layers H Parameters | -
(arName N o+
= IsGrounded J
= IsAlive 4
= IsHurt @)
= Attack @)
[Espeed o0 |

Add a transition from idle to walk. Uncheck Has Exit Time and Fixed Duration, set
Transition Duration to 0, and add a condition where Speed is Greater than 0.01. This
state will be responsible for triggering the robot’s walk animation.

Auto Live Link = idle -> walk @ = % A

W= 1 AnimatorTransitionBase

Transitions Solo Mute
ool 0 mre
=
- | %
W= idle -> walk
[Fas Exit Time =] |
¥ Settings
Exit Time 0.4
Fixed Duration -
Transition Duration (%) 0
Transition Offset 0
Interruption Source [None 4]

Ordered Interruption [/

Conditions

l: [Speed [~] [Greater +] [0.01

Add another transition from walk to idle. Set the values the same as the previous
transition, but set Speed at Less than 0.01.

= valk-> idle o %2
W= 1 AnimatorTransitionBase

Auto Live Link

Transitions Solo Mute

- | %,
= wvalk -> idle
Has Exit Time -
¥ Settings

Exit Time 0.5
Fixed Duration O
Transition Duration (%) 0
Transition Offset 0 |
Interruption Source [None s]

Ordered Interruption [V

Conditions
= Speed less 0 T —

Now you need a script to handle how the robot walks and navigates to a particular point
on the map. It’ll handle the actor’s decisions, such as determining if walking is possible.
Initially, this Walker script will be used by the robot. Eventually, the hero will use it
too.

Before creating the script, you’ll append the Actor script.
Open Actor.cs and add the following method somewhere:

public virtual bool CanWalk() {
return true;

}

CanWalk() is a method that determines if an actor’s current state allows walking. All
actors can walk by default, but derived classes might override this method and return
false. For instance, the hurt state doesn’t allow walking.

Save the Actor script and create a new C# script named Walker in the Assets\ Scripts
folder.

Open it and replace the contents of the file with the following code:

using System.Collections.Generic;
using System.Lingq;

using UnityEngine;

using UnityEngine.AI;

//1

[RequireComponent (typeof(Actor))]

public class Walker : MonoBehaviour {
//2
public NavMeshAgent navMeshAgent;
private NavMeshPath navPath;
private List<Vector3> corners;

//3
float currentSpeed;
float speed;

//4
private Actor actor;
private System.Action didFinishWalk;

//5

void Start() {
navMeshAgent.updatePosition = false;
navMeshAgent.updateRotation = false;
actor = GetComponent<Actor> ();

}
}

K

Here’s a breakdown of what you’re doing in there:

1. The walker script requires an Actor reference. This Actor will be moved by the
script.

2. These properties are references for handling navigation. First, a public reference to
a NavMeshAgent that you’ll set in the Inspector. You’ll use the next two properties
to calculate the pathing.

3. The speed and currentSpeed parameters are set based on how fast the Walker
should walk towards the target position.

4. This references the Actor that will walk and a didFinishwalk callback, which is
called when the Walker reaches its destination.

5. InStart(),you set the initial speed, and then set the actor by finding the Actor via
the GetComponent<Actor>() method.

The first two lines of Start() prevent the NavMeshAgent from updating this
GameObiject’s transform, because the Actor’s NavMeshAgent and Rigidbody can modify
the transform and create a conflict.

You’re going to manually compute the Rigidbody position using the NavMeshAgent’s
pathing and set the Rigidbody’s position manually instead of letting the NavMeshAgent
automatically change the transform of the Rigidbody.

Add this method to the Walker script:

public bool MoveTo(Vector3 targetPosition, System.Action callback = null)
{

navMeshAgent.Warp(transform.position);
didFinishWalk = callback;
speed = actor.speed;

navPath = new NavMeshPath();
bool pathFound = navMeshAgent.CalculatePath(targetPosition, navPath);

if (pathFound) {
corners = navPath.corners.ToList();
return true;

¥

return false;

}

MoveTo() is a method that must be accessible from other classes, so it is public. It
calculates how the walker should move to the requested targetPosition and returns
whether it found a possible path or not.

K

It teleports the navMeshAgent to its current position because the NavMeshAgent and
Rigidbody often don’t agree on the actor’s location. Then it calculates how to get to
targetPosition using the CalculatePath method. If a path is found, it stores the path
and returns true, otherwise, it returns false.

The calculated path, in the form of a list of positions, is stored in the corners property.
These positions represent the “corners” of the path towards the target position.

When the robot wants to get in the hero’s face, it’ll get the following corners labeled
from 1 to 3. The robot that’s “being walked” by your logic will navigate towards the first
corner before moving to the second and third corners.

@f&ﬁ"\\\\ >~

(2]

The Actor will use FixedUpdate() to actually walk the path so that physics calculations
are accurate.

Next, still in the Walker script, add these methods:

//1

public void StopMovement() {
navPath null;
corners null;

currentSpeed =

s

protected void FixedUpdate() {
//2
bool canWalk = actor.CanWalk();
if (canWalk && corners != null && corners.Count > 0) {
currentSpeed = speed;
actor.body.MovePosition(

Vector3.MoveTowards(transform.position, corners[0],
Time.fixedDeltaTime * speed));

//3
if (Vector3.SqrMagnitude(
transform.position — corners[0]) < 0.6f) {
corners.RemoveAt(0);

b

if (corners.Count > 0) {
currentSpeed = speed;
//4
Vector3 direction = transform.position - corners[0];
actor.FlipSprite(direction.x >= 0);
} else {
//5
currentSpeed = 0.0f;
if (didFinishWalk !'= null) {
didFinishWalk.Invoke();
didFinishWalk = null;
¥
}
¥

actor.baseAnim.SetFloat("Speed", currentSpeed);

}

In here, you’ve created the StopMovement () and FixedUpdate() methods the droid needs
to get around.

1. StopMovement clears the path and stops any movement from the Walker script by
nullifying navPath and corners and reducing speed to 0.

2. FixedUpdate manually moves the Walker toward the targetPosition. First, it checks
if CanwWalk() returns true and if a path exists. When both conditions are met, the
method moves the Actor’s position towards the first of the corners.

3. Once the walker reaches a corner, you remove that position from the list.

4. You flip the droid around when necessary based on the direction it's headed
towards.

5. When corners runs out of entries, the didFinishwWalk callback is triggered. The
actor’s animator is also updated to the walker’s current speed.

Save the Walker script and return to Unity.

Add the Walker component to the EnemyRobot and set the NavMeshAgent property
to the EnemyRobot.

K

© inspector [e

W EnemyRobot | [] Static ¥
Tag | Untagged ¢ | Layer| Enemy :)
» .~ Transform o
» .« ¥ Robot (Script) (] - 8
» i ¥ Box Collider
» & Rigidbody

» [+ Nav Mesh Agent

v « v walker (Script)
Script + Walker

Nav Mesh Agent ~EnemyRobot (Nav Mesh Age | ©

=)\ =il =)/ =]
eL(#l(#Ll|#L|2L

OB g e R

Congratulations, you’ve just taught your droid to walk. However, it may not seem like
you’ve done a thing! There’s no way to test your work because the robot has no
controls. You’ll work on that next.

If bots only had a brain

You’ve reached a critical point in this chapter. Soon, you’ll give a brain to that mindless,
smoldering hunk of metal. But before you dive into it, consider the behavior you want
to see in your protégé.

First, think about the states a robot can be in when it sees the hero:
 Stand still

» Wander around the area

o Approach the hero

» Attack the hero

If the robot can reach the hero, then it can take advantage of proximity and launch an
attack. However, if the robot is not close and punches the air, it looks stupid — yes, even
robots get embarrassed!

Each state should have a different selection probability, and furthermore, these
probabilities should differ from one situation to the next.

Consider this scenario:

Eeep..Beep..
Enemy near Eeep..Beap..

70V to attack Enemy far
S0% te stars 307 to stare
Dacision: Attack! 7OV 1o chase

Dacision: S'tare.

The robot close to the hero chooses to attack 70 percent of the time. On the other hand,
the more distant robot chooses to move closer 70 percent of the time, but in this
scenario, it chooses to remain idle.

In every situation, the robot should weigh its options and make a choice. The higher the
probability of an option, the more likely the robot is to choose it.

You’ll create a new script to handle all this decision making. Based on the input of
proximity with the hero, the robot should choose whether to attack, approach the hero,
wander around or stare blankly into space.

Before you can work on the Al script, you need to modify the robot’s hierarchy.
Remember how the Robot and Hero classes derive from a common superclass named
Actor?

Actor

&7 g

Robot Hero

You’ll make a new subclass of Actor that will be the superclass of the Robot, and you’ll
name it Enemy. You new subclass will handle code that powers all the enemies,
including the big bad bosses you haven’t made yet!

Laying the groundwork for Al

Create a new C# script named Enemy in the Assets / Scripts folder, open it and
replace its contents with the following:

using System.Collections.Generic;
using System.Ling;
using UnityEngine;

public class Enemy : Actor {
//1
public static int TotalEnemies;
public Walker walker;

public bool stopMovementWhenHit = true;

//2
public void RegisterEnemy() {
TotalEnemies++;

I

//3

protected override void Die() {
base.Die();
walker.enabled = false;
TotalEnemies—;

K

1.

Enemy has three properties: TotalEnemies holds the amount of live, on-screen
enemies, walker is a reference to the Walker script, and stopMovementWhenHit
determines if this Enemy should stop moving when it takes damage.

Every time an enemy spawns, it calls RegisterEnemy() so the enemy count is correct
at all times.

In Die(), the Actor’s Die() method is called with base.Die() and Walker is disabled.
Lastly, TotalEnemies is reduced by one.

You declareTotalEnemies as static so that it becomes a class variable instead of an
instance variable. The effect is that all instances of the Enemy share the same value for
the integer TotalEnemies.

Add the following methods to the Enemy script:

//1
public void MoveTo(Vector3 targetPosition) {
walker.MoveTo (targetPosition);

¥

//2
public void MoveToOffset(Vector3 targetPosition, Vector3 offset) {
if (!walker.MoveTo (targetPosition + offset)) {
walker.MoveTo (targetPosition - offset);
¥
b

//3
public void Wait() {
walker.StopMovement ();

¥

//4
public override void TakeDamage(float value, Vector3 hitVector) {
if (stopMovementWhenHit) {
walker.StopMovement ();
b
base.TakeDamage(value, hitVector);

}

//5
public override bool CanWalk () {
return
'baseAnim.GetCurrentAnimatorStateInfo(0).IsName("hurt");
}

The above methods integrate the walker into the Enemy script:

1.

The enemy’s MoveTo calls the walker’s MoveTo method.

K

2. MoveToOffset is similar to the MoveTo method, but it determines whether the enemy
can walk to the right (positive offset) or the left (negative offset) of the
targetPosition. This allows the enemy to move to a free space next to the hero.

3. Wait() stops the walker’s movement.

4. TakeDamage overrides calls to the Actor’s TakeDamage with the base.TakeDamage line.
However, it checks if the enemy’s walk should be interrupted when it takes damage.
Setting stopMovementWhenHit to true in the Inspector will stop the enemy’s
movement when it takes a punch.

5. CanwWalk() is an override that checks whether the hurt animation is currently
playing since the enemy should not be able to walk when it’s taking damage.

Save the Enemy script and open Robot.cs to change its class declaration from this:
public class Robot : Actor {

To this:
public class Robot : Enemy {

Now the robot is a derived class of enemy, which enables movement via the Walker
script whenever its Al demands movement.

As previously discussed, in order to decide next steps the robot has to know if the hero
is within its proximity. Think of it as the robot’s “detection bubble” — the hero officially
invades the droid’s personal space when he enters the bubble.

No Enemies Nearby....

\m\\

This can be accomplished by creating another script that detects whenever the hero
overlaps a Sphere collider. This script will be the HeroDetector script.

K

\\\\\%\\

Create a new C# Script in the Assets / Scripts folder named HeroDetector. Replace the
contents with the following code block:

using UnityEngine;

//1
[RequireComponent (typeof(Collider))]
public class HeroDetector : MonoBehaviour {

//2
public bool heroIsNearby;

//3

public void OnTriggerEnter(Collider collider) {
if (collider.tag == "Hero") {
heroIsNearby = true;
b
}
public void OnTriggerExit(Collider collider) {
if (collider.tag == "Hero") {

heroIsNearby = false;

1. The HeroDetector script requires a collider component that detects when the hero
overlaps it. Note that it is a generic collider type that allows you to use any subclass
of collider.

2. The Boolean heroIsNearby serves as a flag when the collider detects the hero.
External classes can access this property because it’s public.

3. Both instances of OnTrigger detect colliders marked with the tag Hero. These
methods also update heroIsNearby whenever the hero is detected or lost.

Save HeroDetector, open the Actor script and add this method:

public virtual void FaceTarget(Vector3 targetPoint) {
FlipSprite(transform.position.x - targetPoint.x > 0);

FaceTarget changes the direction an actor faces based on its target point, preventing
the droids from the crushing embarrassment of punching the air when standing next to
the hero. It calls FlipSprite to calculate which direction to face based on whether the
target is to the actor’s left or right.

Okay, the game is ready for you to write the EnemyAlI script. Don’t forget to save the
Actor script before proceeding.

K

The Al script you’re about to write uses timing and probabilities to give the robots
limited decision making abilities. Waiting periods between decisions will vary, for
instance, the AI will wait longer after it decides to punch than when it decides to do
nothing.

. = ‘V\ s)
& h & [&
g y) >
Robot.Attack() Robot.ldle() Robot.Walk()
0 1 2 3 4 5 l
|] | |
- Attack Wait - - -

| I Walk Wait
Idle Wait

Time (in seconds)

You’ll implement weighting system that considers the distance between the robot and
hero to help the droid decide what to do. For example, when the robot and hero are
close to each other, the robot is more likely to attack than chase. Conversely, if the hero
is out of reach, the robot is more likely to chase than attack.

The process is simple:

1. List the actions. Assign a weight to each option according to its probability.
2. Get the total of the weights, and then assign a range to each option.

3. Choose a random number between 1 and the sum of the weights.

4. If the random number is within the action’s assigned range, then carry out that
action.

In the example below, given the weights of 50 attack, 30 idle, 10 chase and 10 move, a
result of 45 means an attack is imminent. A result of 78 means the droid will chase the
hero.

Decision Weight Range (Inclusive)

attack 50 1 to 50
idle 30 51 to 80
chase 10 81 to 90

pick a random number from 1 to 100

result: 45
decision: attack

result: 78
decision: chase

Got that? Good. Now on with the script!

Writing the Al script

Create a new C# script named EnemyAl in the Assets / Scripts folder. Open it and
replace its contents with the following code block:

using System.Collections.Generic;
using UnityEngine;

//1
[RequireComponent (typeof(Enemy))]
public class EnemyAI : MonoBehaviour {
//2
public enum EnemyAction {
None,
Wait,
Attack,
Chase,
Roam

//3
public class DecisionWeight {
public int weight;
public EnemyAction action;
public DecisionWeight(int weight, EnemyAction action) {
this.weight = weight;
this.action = action;
I
I

//4
Enemy enemy;
GameObject heroObj;

public float attackReachMin;
public float attackReachMax;
public float personalSpace;

//5
public HeroDetector detector;

List<DecisionWeight> weights;
public EnemyAction currentAction = EnemyAction.None;

//6
private float decisionDuration;

}

Here’s what you’ve got in there:

1.

The required reference to Enemy — the EnemyAI depends on the Enemy script for
specific actions, such as attacking or moving towards the hero.

A declaration of the EnemyAction enumeration — this is a complete list of the AI’s
potential actions.

DecisionWeight is a class that stores data for the weighted decision randomizer. It
contains a weight property and the corresponding action property.

These variables reference the hero and enemy objects. The float variables will be
used to calculate if the enemy will hit the hero if it chooses to attack.

HeroDetector is a reference to the Hero script that checks if the hero is nearby, and
weights lists all possible actions when a decision is made. EnemyAction is the action
that the Al is currently performing.

decisionDuration is the time the AI must wait between decisions. It’s determined
by the most recent decision.

Next, also add the following method:

//1
void Start() {

weights = new List<DecisionWeight>();

enemy = GetComponent<Enemy>();

//2

heroObj = GameObject.FindGameObjectWithTag("Hero");

This is a Start () method that:

1.

Instantiates the weights list and finds the Enemy component on the GameObject to
which this script is attached.

Searches heroObj using the static FindGameObjectWithTag method — you’ll play
around with tags and this method later in this chapter.

Add the first of the Al action methods, the Chase() method:

p

}

rivate void Chase() {

//1

Vector3 directionVector = heroObj.transform.position -
transform.position;

directionVector.z = directionVector.y = 0;

directionVector.Normalize();

//2
directionVector x= -1f;
directionVector *= personalSpace;

//3
directionVector.z += Random.Range(-0.4f, 0.4f);

//4

enemy.MoveToOffset(heroObj.transform.position,
directionVector);

decisionDuration = Random.Range(0.2f, 0.4f);

Chase() moves the enemy into attack position. The Al will order the robot to go to the
hero’s position plus an offset value, moving that metal machine to a point that allows
for head-on attack. It’s calculated like this:

1.

Set an offset vector to the normalized direction vector from the enemy towards the
hero. You set z and y-values to @ since you only need the x-value to determine if the
hero is to the robot’s left or right.

Negate the direction vector and multiply this with the personalSpace property,
which sets the robot’s destination to a point in front of the hero — not on top — so
that the robot’s punches land on the hero.

Generate a random value between -0. 4 and 0.4 and set it as the offset’s z-value.
This affords the robot a more natural attack position, instead of always placing it all
at the exact same point in front of the hero.

Determine the hero’s position plus a calculated offset and move the robot there.
After that, the AI waits for a random duration between 0.2 and 0.4 seconds before
making another decision.

The image below demonstrates the calculation. The red line represents personalSpace.
The higher it is, the farther the robot’s position will be from the hero. The pink line
represents the possible randomized z-offset, given the red line’s calculations. The
green point represents a potential offset value based on the hero’s position, which is

the

K

yellow point.

The AI will tell the robot to move to any point on the pink line when chasing the hero,
for example, the green point.

h”. oo 2
A Q‘ \

Add the remaining Al methods:

//1

private void Wait() {
decisionDuration = Random.Range(0.2f, 0.5f);
enemy.Wait();

//2

private void Attack() {
enemy.FaceTarget(heroObj.transform.position);
enemy.Attack();
decisionDuration = Random.Range(1.0f, 1.5f);

s

//3
private void Roam() {
float randomDegree = Random.Range(@, 360);
Vector2 offset = new Vector2(Mathf.Sin(randomDegree),
Mathf.Cos(randomDegree));
float distance = Random.Range(1, 3);
offset *= distance;

Vector3 directionVector = new Vector3(offset.x, 0, offset.y);
enemy.MoveTo(enemy.transform.position + directionVector);

decisionDuration = Random.Range(0.3f, 0.6f);

¥

Wait(),Roam() and Attack() are methods that represent the remaining actions the
enemy can take.

K

Wait() calls enemy.Wait() to stop the droid’s movement. In turn, it reverts to the
idle state. This method also randomly sets the value of decisionDuration between
0.2 to 0.5 seconds.

Attack() performs actions that are necessary before the enemy can punch;
specifically, it faces the robot toward the hero and calls enemy.Attack(). Lastly,
decisionDuration is longer with this action than any other, giving the hero a bit of
time to throw the first punch or evade.

Roam() generates a random offset vector that the robot should move toward.
Vector2(Mathf.Sin(randomDegree), Mathf.Cos(randomDegree)) provides a random
vector. Once it’s obtained, it’s multiplied by a random value between 1 and 3. The Al
makes the robot move to the offset. This method’s decision duration is a little
longer than Wait (), but shorter than Attack().

Add the actual decision-making methods:

private void DecideWithWeights(int attack, int wait, int chase, int move)

{

s

/
p

K

weights.Clear();

//1
if (attack > 0) {
weights.Add(new DecisionWeight(attack, EnemyAction.Attack));

if (chase > 0) {
weights.Add(new DecisionWeight(chase, EnemyAction.Chase));

if (wait > 0) {
weights.Add(new DecisionWeight(wait, EnemyAction.Wait));

if (move > 0) {
weights.Add(new DecisionWeight(move, EnemyAction.Roam));

//2
int total = attack + chase + wait + move;
int intDecision = Random.Range(@, total - 1);

//3
foreach (DecisionWeight weight in weights) {
intDecision —= weight.weight;

if (intDecision <= @) {
SetDecision(weight.action);
break;
+
¥

/4
rivate void SetDecision(EnemyAction action) {
currentAction = action;

if (action == EnemyAction.Attack) {
Attack();

} else if (action == EnemyAction.Chase) {
Chase();

} else if (action == EnemyAction.Roam) {
Roam();

} else if (action == EnemyAction.Wait) {
Wait();

¥

DecideWithWeights is a helper method that calculates and calls the next
EnemyAction based on the input parameters. It takes integer weight values for
attack, wait, chase and move. If a parameter is greater than o, it adds that action and
its corresponding weight to the weights list.

Here you calculate the weighting and obtain a random index between @ and the
total-1.

Subtract the value of each possible EnemyAction weight in the weights list from the
random index value, until the value is less than or equal to zero. Then choose the
last EnemyAction and call the SetDecision method.

SetDecision method takes in an EnemyAction parameter and calls the respective
methods to perform it. For example, if the action variable is set to
EnemyAction.Chase, the Chase() method is called. It also sets the currentAction
property with the chosen EnemyAction value.

Next, add this Update () method:

void Update() {
//1
float sqrDistance = Vector3.SqrMagnitude(
heroObj.transform.position — transform.position);

//2
bool canReach = attackReachMin * attackReachMin < sqrDistance
&& sqrDistance < attackReachMax * attackReachMax;

//3
bool samePlane = Mathf.Abs(heroObj.transform.position.z -
transform.position.z) < 0.5f;

//4
if (canReach && currentAction == EnemyAction.Chase) {
SetDecision(EnemyAction.Wait);

¥

//5

if (decisionDuration > 0.0f) {
decisionDuration —= Time.deltaTime;

} else {

if (!detector.heroIsNearby) {
DecideWithWeights(@, 20, 80, 0);
} else {
if (samePlane) {
if (canReach) {
DecideWithWeights(70, 15, @, 15);
} else {
) DecideWithWeights(@, 10, 80, 10);
} else {
DecideWithWeights(@, 20, 60, 20);

b
b
}

The Update() method handles the AI’s logic. It tells the robot when to make decisions
and how to weigh them. Warning: This explanation is lengthy and detailed but comes
with pictures!

1. First, it calculates the distance between the hero and enemy. Note that it only
calculates the squared distance, because the square root operation is expensive and
unnecessary for distance comparisons. When you don’t need the actual distance, it’s
fine to compare the squared distance or square magnitudes — it’s a little
optimization that helps Pompadroid run buttery-smooth on slower devices. Next, it
checks the distance from the enemy to the hero. The diagram below illustrates this:
The red and yellow lines represent the positions of the hero and the robot.

2. Then the script sets the canReach Boolean when the distance between the hero and
robot falls between attackReachMin and attackReachMax, as shown by the pink and
blue lines below. This is important. When the hero is outside of the minimum and
maximum, the robot’s attacks won’t connect.

|attackReachMax

|———— attackReachMin

3. The samePlane Boolean variable is set based on whether the two z-positions are
within 0.5 units of each other. This variable addresses cases when the hero is
technically close enough to punch, but its position on the z-axis makes it
impossible to do anything but punch the air. Consider the below image — there’s no
way the droid can punch the hero in the first two cases because it can only throw
sideways punches.

4. If the droid could reach the hero but it’s currently in a chase, this stops the chase
and initiates a wait action.

5. Whenever decisionDuration is less than zero, the Al makes a decision based on the
variables calculated before. If the hero is not close, the Al will only decide between
doing nothing and chasing. When the hero is close enough to strike and on the
same plane, this logic gives more weight to attack than the other options. When the
hero is reachable but on a different plane, then the logic will move the robot into a
position where it can hit the hero.

Save your work, open the Enemy script and add this to the top:
public EnemyAI ai;

This variable declaration adds a reference to the EnemyAl.

Find the Die() override method, and insert the following code after the base.Die() line:
ai.enabled = false;

This disables the EnemyAlI when hero puts the droid out of its misery.

Whew!! You just finished scripting the Al. Save all your scripts and return to Unity.

Tag: It’s just a nickname

You’re close to assembling your new smart robot with its EnemyAI. But before you do,
you need to give the robot a way to find the hero at runtime. You’ll use tags, which are
words you associate with specific GameObjects to make it easy to find them in a scene.

Consider the following line in the Start() method of the EnemyAI script; it looks for a
GameObiject tagged with "Hero".

heroObj = GameObject.FindGameObjectWithTag("Hero");

Select MyHero, open the Tag drop-down under the GameObject name in the Inspector
and select Add Tag. You can also find these settings via Edit \ Project Settings \ Tags
& Layers in the top menu.

© inspector [e

9 'MyHero | [] static ¥
Tag v Untagged ayer | Friendly N
> A Respawn @ 3 %
Finish
7 0] =
¥ MM ooniy R
Script MainCamera - =
Base A Player jnimator (Animator) | ©
Body GameController E(Rigidbody) | ©
Shado haracter (Sprite Re. ©
Speed Add Tag... I
Is Grounded -
= - . s i . = i 2 1l =

You’ll see the Tags & Layer settings in the Inspector:

© mspector |G

t} Tags & Layers @ = %
¥V Tags
. Listis Empty |
+ —
b Sorting Layers
b Layers

Beat ’Em Up Game Starter Kit Chapter 6: Brainy Bots

Click the + icon and add a tag named Hero. Voila!

© Inspector

@ Tags & Layers

Open the tag drop-down again for MyHero to confirm the tag is there. Select Hero to
apply the tag to MyHero.

© Inspector

. ¥ MyHero
Tag v Untagged

Respawn

Finish

EditorOnly

MainCamera S —
Player

GameController 0 (Rigidbody)
;0000 |

(Sprite Renderer)

Now components can locate MyHero by searching for the Hero tag!

Stop the robot infighting

One last detail before you assemble your droid: You need to make sure that robots can’t
hurt each other. Your fancy new smartdroid should know better than to beat up on its
own kind.

h raywenderlich.com 240

Open Actor.cs and find the DidHitObject method. Replace this:
if (actor != null & actor.CanBeHit()) {
With this:

if (actor != null & actor.CanBeHit() &&
collider.tag != gameObject.tag) {

Actors with the same tag can no longer punch each other.

With all the scripts done, it's time to add sentience to our friend.

Assemble all the robots!

First, you need a HeroDetector that allows the robot to feel the presence of its enemy,
the hero.

Create a new Empty GameObject named HeroDetector. Make it a child of
EnemyRobot and reset its Transform. Set its Layer to Detector.

= Hierarchy | & += © Inspector | a .=
| Create ~| (- All -

v € Game* = =
» MyHero
> Mapl » ~ _ Transform
» MyGameManager
¥ EnemyRobot [Add Component
ShadowCharacter

» RobotAnimator

[HeroDetector [| Static ¥

Tag | Untagged + | Layed[Detector

]
o

3| |

Add a Sphere Collider and a HeroDetector component to it. Check Is Trigger in the
Sphere Collider and set its Radius to 8.

Note: Add the Sphere Collider first because it’s a required component of the
HeroDetector. Although Unity adds required components automatically, it doesn’t
know whether you want a box, sphere or capsule when you add a collider.

Look at the Scene view. The collider is big enough to detect the hero even when he’s
pretty far away.

#: Scene = | ® Inspector | Elom
shaded 4 ¥ HeroDetector [_] Static ¥
Tag | Untagged 4 | Layer| Detector Ad
b~ Transform o %
v () ¥ sphere Collider U~
4% | Edit Collider
I Is Trigger
Material |None (Physic Material) [o]
Center
X 0 'Y 0 'Z0
| Radius 8
¥ « Hero Detector (Script) @ = =
Script HeroDetector (o]

Hero Is Nearby

N

[Add Component

Add the EnemyAl script to EnemyRobot. On the newly added EnemyAI component,
set Attack Reach Min to 1, Attack Reach Max to 2, Personal Space to 0.75, and then
assign the HeroDetector child as the Detector.

= Hierarchy | & -= © Inspector | o =]
| Create - | (cAT O | o EnemyRobot [_] static ¥
v Q Game* v= ']
b MyHero Tag | Untagged 4 | Layer| Enemy s
> Mapl b .~ Transform @ ' %,
» MyGameManager » = ¥ Robot (Script) @ 3 %,
E"e"“'R°b°t » i ¥ Box Collider @ = =
> 4 Rigidbody 3,
HeroDetector » ¥ Nav Mesh Agent o
» o [« Walker (Script) @ =
v = [+ Enemy Al (Script) @ & %
Script EnemyAl (o]
Attack Reach Min [1
Attack Reach Max 2
Personal Space 0.75
Detector « HeroDetector (HeroDetector g
Current Action None &

Select EnemyRobot and look at the Robot component in the Inspector. Because you
changed its superclass to Enemy, you now need a few references to the component. Set
Ai and the Walker properties by dragging the EnemyAI and Walker components into
their respective fields.

K

© inspector L
& EnemyRobot | [] Static ¥
Tag | untagged N Layer[Enemy 3
b~ Transform = %
v « |¥ Robot (Script) @ = %
Script + Robot ©
Base Anim 32 RobotAnimator (Animator) | ©
Body | EnemyRobot (Rigidbody) = @
Shadow Sprite = ShadowCharacter (Sprite Rer ©
Speed 2 |
Is Grounded O
Base Sprite | . EnemyBody (Sprite Renderer, ©@
Is Alive 4
Max Life 1100
Current Life 100 |
| walker « EnemyRobot (Walker) Ik |
Stop Movement When
| A = EnemyHobot [EnemyAl) ' q
» i ¥ Box Collider / f @ = %
» /. Rigidbody /] / o %,
>~ ¥ Nav Mesh Agent @ = %
> e
> v Enemy Al (Scripy) | Q& %

Save the project and run the game. You’ll notice the robot moves around and tries to
engage you (the hero) in combat! However, you can’t tell if the hero is hit because he
doesn’t flinch when punched. What a badass!

P
g

N

You can tell that the punches are landing because the hero’s currentLife goes down
whenever he gets hit.

K

Also, you get this warning whenever that droid lands a punch:

Parameter 'IsHurt' does not exist.
UnityEngine. Animator:SetTrigger(String)

Parameter 'IsHurt' does not exist.
UnityEngine.Animator:SetTrigger(String)

Now, why is that? Is the hero impervious to pain? Not so much. The hero’s animator
just doesn’t have any support for a hurt animation.

Heroes feel pain too

You’re almost done with this chapter! In this final section, you’ll make the hero react
appropriately when punched. First, you’ll clear up these annoying warnings:

Parameter 'IsAlive’ does not exist.

UnityEngine.Animator:SetBool(String, Boolean)

BoxColliders does not support negative scale or si
The effective box size has been forced positive anc

Double-click hero_anim_controller in the Animation \ Hero folder to open the
Animator window. Add the two missing parameters: an IsAlive Boolean and an IsHurt
trigger. Set the default value of IsAlive to true — you don’t want to play as an undead
hero, right? That should quell the warnings.

K

= IsAlive 4
o

= IsHurt

Next, import Hero Hurt and Death Animation.unitypackage which contains the
animation clips and sprites for the hero’s hurt and death states.

In the Animator window for the hero_anim_controller, drag the hero_hurt_anim clip
to the state machine near Any State and rename it hurt.

Add a transition from Any State to hurt. Uncheck Fixed Duration, set Transition
Duration to @ and add a new condition using the IsHurt trigger.

- | | %
Wss AnyState -> hurt

Has Exit Time
¥ Settings

Exit Time 0_
Fixed Duration O
Transition Duration (%) 0 H
Transition Offset 0
Interruption Source None
Ordered Interruption ¥
Can Transition To Self [«

O

o

Preview source state [idle

G):00 0:05 0 & 0:15

Conditions
= [IsHurt [=]

Note: Feel free to drag the animation states around so you can visualize the state
machine. The transitions will not change when you rearrange things.

Add hero_knockout_anim and rename it knockout. Add a transition from Any State
to knockout. Uncheck Fixed Duration, set Transition Duration to 0 and add a new
condition with IsAlive set to false. Also uncheck the Can Transition To Self
parameter.

Beat ’Em Up Game Starter Kit Chapter 6: Brainy Bots

Conditions
= IsAlive

Lastly, add a transition from hurt to idle to return the hero to idle when the hurt
animation finishes. Keep Has Exit Time checked, set Exit Time to 1, uncheck
FixedDuration and set Transition Duration to 0.

Transitions Solo Mute
" .

- u

% -
hurt -> idle
; Fime ‘

Conditions
List is Empty

h raywenderlich.com 246

You just completed the Hero’s Animator. Open Hero.cs to add a few lines of code that
will prevent any further action when the hero dies.

In the Update() method, insert the following code after the base.Update(); statement:

if (!isAlive) {
return;

}

This prevents the hero from handling button presses when he’s dead.

Next, insert the same if statement at the start of the FixedUpdate() method to disable
horizontal movement when the hero is dead.

Save the script and return to Unity. The only thing missing is a reference in MyHero.

Set the Base Sprite parameter of MyHero’s Hero component to the HeroSprite’s

SpriteRenderer:
= Hierarchy & = © Inspector & v=
| Create ~| @A | ¢4 & MyHero [_] Static ¥
v Q Game* = ;‘ -
Tag \bisce +] Layer Friendly)
¥ HeroAnimator b~ Transform @ S %
: v o [+ Hero (Script) @ = %
AttackCollider ; Hero o)
> Maihladoucharacter Base Ani |32 HeroAnimator (Animator) = ©
it tant Body | MyHero (Rigidbody) | o
¥ EnemyRobot Shadow Sprite \. ShadowCharacter (Sprite Rer, ©
ShadowCharacter Speed 2 |
» RobotAnimator Is Grounded [J
HeroDetector | Base Sprite | HeroSprite (Sprite Renderer) OI
Is Alive
Max Life 1100 |
Current Life 1100 |
Walk Speed 12 |
Run Srnood S |

Save the scene and the project and try it out! That pompadoured protagonist has lost
his poise. He flinches just like the robot when he takes a punch.

o N

Without doing any additional scripting, the hero follows the same rules of life as the
droid. Each punch reduces the hero’s Current Life parameter by 10 and when it reaches
0, he dies. He also flickers to signify his passing.

Where to go from here?

Great job! You’ve added the Al to the droid and now it can attack and make other
decisions with ease. The hero became more realistic with wincing, flickering and a
diminishing life value when he’s under attack. Now you’ve got a game!

Reflecting on what you’ve done in this chapter:
» Implemented animations for a variety of actions for both the hero and enemy.

» Used pathfinding to let your droids navigate the map intelligently without human
intervention.

» Created decision-based Al that lets the droids choose to attack, approach or do
nothing based on their proximity to the hero and some nifty weighting logic.

» Used tags to enable easy searches for specific GameObjects, like MyHero.

» Made the hero a mortal with animation and the same code as you did for the robot —
clever!

That was a long chapter but look at what you did. You wrote Al! Furthermore, you took
the game from barely interesting to challenging. That wandering droid can defend itself
and the hero isn’t impervious to attack.

But something feels lacking. What’s that? You want more metal to shred? You got it.
Soon you’ll have an army of enemies!

In the next chapter, you’ll learn how to create a more interesting game by mixing
combat scenarios with walking segments. Up next, game progression and creating the
game’s playlist!

ter 7: Pompadroid'’s

Up to this point, Pompadroid hasn’t lived up to basic expectations you’d have for any
game. Sure, you have a main character and an opponent, but there’s nothing to do
outside of beating that sad, lonely robot into oblivion. From this point forward, that’s
all going to change.

In this chapter, you’ll create data that you’ll use to make levels where you can do cool
stuff, such as specify where the hero can run and where he needs to fight. Also, you’ll
animate the hero’s entry and exit in the scene. Moreover, you’ll add a transition to a
more challenging (but fun!) second level.

In this chapter, you’ll:

Tint the robot sprites to differentiate classes

» Store level data by using ScriptableObjects

e Understand Pompadroid’s battle events

» Load the level’s ScriptableObject and spawn enemies whenever necessary
* Animate the hero’s entrance and exit animations

» Implement multi-level support for Pompadroid, allowing the hero to play through
multiple levels

So, what are you waiting for? On to making Pompadroid a fun game!

h raywenderlich.com 250

Robot coloring 101

Pompadroid’s basic “baddie”, the robot, comprises three sprites: the base (or body), the
smoke plumes and the belt. Normally they are white with a few highlights and shadows.
A screen full of these white metal beasts would look pretty monotonous.

I

)

p: '8 — .l’.
172N\ 23
= RN

Your robots deserve to have some flair in the form of colors — lots of them. You’ll
achieve this effect through tinting.

In the old days, when developers carved their code into clay tablets, you would have
used a technique called palette swapping, which involves drawing the same sprite using
different color sets or palettes. Today, however, there’s an easy alternative: adjust one
color property to alter the color of your sprite.

Did you wonder why the robot is white? White is easy to tint!

Color tinting explained

Unity uses the RGB color model, meaning that each color comprises three color
components: red, green and blue that have values from 0 to 1, where 0 means no color
and 1 means full color. Each color component is “added” together to get the resulting
RGB color.

Note: Many applications that use the RGB model use a range from 0 to 255 so that
each color component fits into one byte. To convert an RGB color from another
application to Unity’s scale, simply divide each value by 255.

K

The RGB model is an additive model, meaning that it’s a representation of mixing
colors of light. It’s very different from the subtractive models that are common in
everyday life — think paint mixing. Most computer applications mix light colors. It’s
highly likely that you’re looking at mixed light colors on your screen right now.

Colors are usually written like a Vector3, with the first element being the red
component, the second being green and the third being blue. A color of (1,0.5,0) means
red is 1, green is 0.5, and blue is 0.

White is represented as a color with a red-green-blue (RGB) value of (R:1, G:1, B:1),
while black is shown as the absence of all three colors, with an RGB value of (R:0, G:0,
B:0).

RGB(1,1,1) RGB(0,0,0)

To make other colors, you vary the RGB values.

(0.7,1,0.47) (1,1,0)

Tinting works by multiplying a color with a texture or another color. The two sets of
components are multiplied to make another color.

X

(0.5, 0.5, 0.5) (1.0, 0.5, 0.5) (0.5*1.0,0.5* 0.5, 0.5 * 0.5)

(0.5, 0.25, 0.25)

For example, take white and tint it with red.

<H-B

(1,1,1) (1,0,0) (1*1,1*0,1%0)

(1,0,0)

Now take black and tint it with red.

H-N-N

(0,0,0) (1,0,0) (0*1, 0*0,0*0)

0,0,0)

Bright colors are easier to affect with tinting since their values are greater than zero.
Darker colors are not affected as much due to lower component values. Multiply
anything by zero, and you still get...zero.

K

Consider the following robot sprite. Tinting it with the color (R:1.0, G:0, B:0) results in

the following output:
[
_ -

Now you see why the robot sprite is white with black lines. Tinting preserves the black
lines, but the white parts take on the target color.

Unity makes tinting available to all SpriteRenderer components through the color
property.

v [[Sprite Renderer @ =
Sprite zlrobot_base_idle_00 [o]
| Color 2|

Flip Ox QY

Material | @ Sprites-Default)
Draw Mode [simple ™
Sorting Layer | Default ™
Order in Layer 0 |
Mask Interaction | None]

You’ll use different color tints to differentiate between robot classes.

flr b} |
S i L s
[k1) - -

(iiiéd , iid
5E £ e ,

' e . = 1z
] i ']]
& o - ok

Colorless Copper Silver Random

The classes are Colorless, Copper, Silver, Gold and Random, and each class has
varying amounts of damage and hitpoints. Colorless is the weakest while Gold and

Random are the strongest.

K

As you now know, you’ll use robot classes to “treat” the pompadoured protagonist to a
barrage of enemies with varying strength and constitution. In this section, you’ll add
them to the game.

Open Actor.cs and add the following variable declaration at the top:

public float attackDamage = 10;

You’ve created the attackDamage variable, which will decide how much damage a
robot’s punch should deliver.

Find the HitActor method and replace this:
actor.TakeDamage(10, hitVector);

With this:
actor.TakeDamage(attackDamage, hitVector);

HitActor can now use the attackDamage variable to determine how much to deplete the
life value of other actors. It’s more flexible than the damage of -10 that you set up
previously.

Save Actor.cs and open Robot.cs. Add this enumeration at the end of Robot.cs, outside
of the Robot class definition:

public enum RobotColor {
Colorless = 0,
Copper,
Silver,
Gold,
Random

}
The RobotColor enum contains the robot’s possible classes.
Add these variable declarations to the top of the class:

//1
public RobotColor color;

//2
public SpriteRenderer smokeSprite;
public SpriteRenderer beltSprite;

1. color will store the current RobotColor value.

K

2. These two variables will reference the robot’s smoke and belt sprites. These two
SpriteRenderers, along with the baseSprite, will be tinted to the RobotColor’s color.

Next, add the following SetColor method.

public void SetColor(RobotColor color) {
this.color = color;

switch (color) {

case RobotColor.Colorless:

baseSprite.color = Color.white;
smokeSprite.color = Color.white;
beltSprite.color = Color.white;
maxLife = 50.0f;

attackDamage = 2;

break;

case RobotColor.Copper:

baseSprite.color = new Color(1.0f, 0.75f, 0.62f);

smokeSprite.color = new Color(0.38f, 0.63f, 1.0f);
beltSprite.color = new Color(0.86f, 0.85f, 0.71f);
maxLife = 100.0f;

attackDamage = 4;

break;

case RobotColor.Silver:

baseSprite.color = Color.white;

smokeSprite.color = new Color(@.38f, 1.0f, 0.5f);
beltSprite.color = new Color(0.5f, 0.5f, 0.5f);
maxLife = 125.0f;

attackDamage = 5;

break;

case RobotColor.Gold:

baseSprite.color = new Color(0.91f, 0.7f, 0.0f);
smokeSprite.color = new Color(0.42f, 0.15f, 0.10f);
beltSprite.color = new Color(0.86f, 0.5f, 0.32f);
maxLife = 150.0f;

attackDamage = 6;

break;

case RobotColor.Random:

baseSprite.color = new Color(Random.Range(@, 1.0f), Random.Range(0,

1.0f), Random.Range(0, 1.0f));

smokeSprite.color = new Color(Random.Range(@, 1.0f),

Random.Range(@, 1.0f), Random.Range(@, 1.0f));

beltSprite.color = new Color(Random.Range(@, 1.0f), Random.Range(0,

1.0f), Random.Range(0, 1.0f));

¥

maxLife = Random.Range(100, 250);
attackDamage = Random.Range(4, 10);
break;

currentLife = maxLife;

}

This method takes a parameter named RobotColor and tints the sprites according to
your code.

You set the SpriteRenderer’s color to the desired tint for the robot’s base, smoke and

K

belt sprites at each RobotColor switch condition. Colorless, Copper, Silver and Gold
sprites are tinted to their respective colors. As you’d expect for Random, you randomly
obtain the color for each sprite.

You also set maxLife and attackDamage for each robot class. Generally speaking,
RobotColor.Gold is the strongest but RobotColor.Random has the potential to be even
stronger as its attack and life values are, well, random. They can go much higher than
gold.

This next set of methods is for testing tinting. Add these to Robot.cs:

//1
[ContextMenu("Color: Copper")]
void SetToCopper() {

SetColor (RobotColor.Copper);
}

//2
[ContextMenu("Color: Silver")]
void SetToSilver() {

SetColor (RobotColor.Silver);
}

//3
[ContextMenu("Color: Gold")]
void SetToGold() {

SetColor (RobotColor.Gold);

//4
[ContextMenu("Color: Random")]
void SetToRandom() {

SetColor (RobotColor.Random);
}

These methods have the ContextMenu attribute, which adds a command to the context
menu that uses the string parameter for the command’s title. You access them by
clicking the cog icon on the right side of the Inspector.

You created Color: Silver, Color: Copper,Color: Gold and Color: Random commands
that you’ll now see in the context menu of any Robot component. When you select one
of these commands, Unity automatically calls the associated method.

Save this script and return to Unity. You need to add a few references before you test
tinting.

Select EnemyRobot and set up the references on the newly added SmokeSprite and
BeltSprite fields to EnemySmoke and EnemyBelt, as shown below:

= Hierarchy © Inspector

| Create -| (GoAl 4 ¥ EnemyRobot | [Static ¥
v Q Game* =
» MyHero Tag [Untagged %] Layer[Enemy 3]
» Mapl b .~ Transform @ = %
>MvGameManai er v = [v Robot (Script) @ =
EnemyRobot Script . Robot [}
- i:::::ﬁ::::er Base Anim |32 RobotAnimator (Animator) = ©
el Body [EnemyRobot (Rigidbody) | ©
Shadow Sprite | = ShadowCharacter (Sprite Rer ©
Speed 2 |
Is Grounded O
HeroDetector Base Sprite | . EnemyBody (Sprite Renderer ©
Is Alive ™4
Max Life 100
Current Life 100
Attack Damage |10 |
Walker | « EnemyRobot (Walker) IC
Stop Movement When ¥/
Ai | « EnemyRobot (EnemyAl) | e
Color Colorless &
Emoke Sprite - EnemySmoke (Sprite Renderi C
Belt Sprite [l EnemBelt (Sprite Renderer) ﬁ

Test the robot tinting by selecting EnemyRobot in the Hierarchy. Click the cog icon to
open the context menu for the Robot script, and then select one of the commands to

change the robot’s tint.

That’s a droid of a different color!

T o~ Transrorm -
v o [¥ Robot (Script) o
Script + Robot | Reset
Base Anim %= RobotAnimator (Animator)
Body 2 EnemyRobot (Rigidbody) Remove Component
Shadow Sprite > ShadowCharacter (Sprite Rer
Sl > Move Down
Copy Component

Is Grounded -
Base Sprite | . EnemyBody (Sprite Renderer
Is Alive
Max Life [100 Edit Script
Current Life 1100 T
Attack Damage 10 Color: Silver
Walker | = EnemyRobot (Walker) Color: Gold
Stop Movement When Color: Random
A L

4 4

._ i |

g
R, Fr.— = =T

x\,‘*
\QS»

Take note of how the robot’s attack, maxLife, and currentLife change when you switch
RobotColors.

v « ¥ Robot (Script) I
Script + Robot (o]
Base Anim |32 RobotAnimator (Animator) | ©
Body . EnemyRobot (Rigidbody) (o]
Shadow Sprite > ShadowCharacter (Sprite Rer ©
Speed 2]
Is Grounded]

Base Sprite IL'.oll EnemyBody (Sprite Rendererl (o]
Is Alive

Max Life 150

Current Life 150

Attack Damage 6

Walker « EnemyRobot (Walker) e
Stop Movement When (¥

Ai « EnemyRobot (EnemyAl) | ©

| Color Gold s
Smoke Sprite '~ EnemySmoke (Sprite Renden] o]
Belt Sprite | = EnemyBelt (Sprite Renderer) | ©

Remember that these commands are just for testing. Later in the chapter, you’ll make
the game set the robots’ color automatically when they spawn.

And with that, you’re done playing around with colors.

Make it interesting with game pacing

What’s next? The hero’s life is far too leisurely because he lacks goals and faces no
obstacles. That’s going to change, starting right now. Pacing is how you’ll manage the
flow of the game. It’s how you’ll determine whether this game is going to be boring,
hard or fun. Through pacing, you’ll dictate whether the player should be ready to fight
or stroll leisurely along.

K

Pompadroid allows the hero to freely walk across the map to reach the other side. But
that’s boring. The first pacing element you’ll implement is battle events. During one of
these, the game will spawn a set amount of robots from either side of the screen, and
you can probably guess what happens next.

To make it interesting for the player, you’ll disable the camera’s movement during
battle events, preventing the hero’s escape from the droids’ wrath. Once the hero
defeats all of the combatants, he may continue onward.

Here’s how the game will play out: a set of battle events will litter the map, and the
hero must fight through them to complete the level. Once the hero defeats all the levels
of the game, he’ll be victorious!

Battle - Battle E : Battle
4 robots 5 robots 3 robots

The strength of enemy forces must be stored at each battle event to enable you, the
game designer, to create a balanced map. You don’t want to make the map impossible to
beat with an insurmountable amount of opponents. On the other hand, you don’t want
to give the hero too few opponents either. Striking a perfect balance between difficulty
and pacing is the key to making a fun game.

Scriptable Objects are Unity game assets that you can script and use to store any type
of data. You’ll use them to store information about battle events. Think of them as
components that behave as assets rather than GameObjects.

Note: While a ScriptableObject is nice and all, it’s important to remember it has a
caveat. Unity assets, unlike GameObjects, retain changes made to them even when
the game is in play mode. Be careful when editing these assets — you could easily
make a mistake you can’t undo!

Each battle event will store its own set of information. First, you’ll store the position
that will trigger a battle event and use it to determine if the hero is close enough to
initiate a battle. Second, you’ll store enemy types to determine what kind of robot mob
should spawn for each event.

Currently, the game only supports robots, but in a later chapter, you’ll build in support
for a boss. When storing robots, you’ll also store RobotColors. Finally, you’ll also store
each robot spawn position. Sounds simple enough, right?

K

Open the Unity Packages folder, and import Level1Data.unitypackage. It contains an
asset named Levell1Data and a C# script named LevelData.cs. Open the script and take
a closer look at its code.

using System;
using System.Collections.Generic;
using UnityEngine;

//1
[CreateAssetMenu(fileName ="LevelData", menuName = "Pompadroid/
LevelData")]
public class LevelData : ScriptableObject {
//2
public List<BattleEvent> battleData;
public GameObject levelPrefab;
public string levelName;

//3
[Serializablel
public class BattleEvent {
//4
public int column;
public List<EnemyData> enemies;

//5

[Serializable]

public class EnemyData {
public EnemyType type;
public RobotColor color;
//6
public int row;
public float offset;

b

public enum EnemyType {
Robot = 0,
Boss

b

The script contains three different classes and an enumeration type. Here’s a deeper
explanation:

1. The LevelData class has the CreateAssetMenu attribute, which allows you to create a
LevelData ScriptableObject from within the Assets / Create submenu found in
Unity’s menu bar. This attribute also creates a shortcut when you right-click the
contents of a folder. From there, you can select Create / Pompadroid / LevelData
from the Project view.

Assets » LevelData

This folder is empty

Pompadroid > LevelData

Folder

C# Script

Javascript

Editor Test C# Script

Reveal in Finder Shader >
Open
Delete

Scene
Prefab

Audio Mixer

Import New Asset...

2. The LevelData class stores information about a single level. It contains battleData,
which is simply a list of battle events in a level. It also has a levelPrefab variable
that references the level's tiled map, and finally, leve IName, which as the name
suggests, is the title of the level.

3. The BattleEvent class is given the Serializable attribute so that the contents of
the class display in the Inspector.

4. The column variable determines the X position at which to trigger the battle event.
Think of it like a booby-trapped column of tiles that, when stepped upon, will send
a horde of enemies the hero's way.

5. The EnemyData class stores information about enemy spawns; type determines
whether the enemy will be a robot or a boss, and in the case of the former, you'll use
color to specify the robot’s class.

6. The row variable determines the Y position at which the enemy will spawn, while
of fset specifies how far from the center of the screen it will spawn.

That's how the LevelData stores the game events. Neat isn't it?Return to Unity. You'll
need to set up a few things before you use any level data files.

Creating prefabs and LevelData

You’ll need to create two new prefabs: EnemyRobot and Map1.

Drag the EnemyRobot towards the Assets / Prefabs folder in the Project view to create
an EnemyRobot prefab. This will automatically change the EnemyRobot label's color to
blue in the Hierarchy. Drag Map1 to the same folder to create a Map1 prefab. After
you’ve created both prefabs, delete the original GameObjects from the Hierarchy.

K

= Hierarchy
‘ Create " arAll)
v Q Game*
» MyHero

[

» MyGameManager

» EnemyRobot

@ Project E Console

J Create '1 (Q \
» 1 7 Favorites Assets » Refahs

|

» i EnemyRobot
V& Assets

» &5 Animation
» G Images
&l LevelData
Gl Scenes
» Gl Scripts

Now you have the necessary prefabs for your first level. At this point, you can create a
LevelData asset for your first level. You have the power to design levels!

Creating a level from scratch may sound daunting — there are many options! While it’s
true that level creation can be a big task, you’ll find the LevelData included in this
starter kit makes it manageable and allows you to learn the process pretty quickly.

The LevellData.unitypackage you've imported earlier contains a Level1Data asset in
the Assets / LevelData folder. Select it and check its contents in the Inspector.

Drag the Map1 prefab into the LevelPrefab field to create a prefab reference for that
asset, effectively setting Map1 as the tiled map for the first level.

© Inspector] =

E LevellData o

| Open |

Script LevelData
'V Battle Data
Size (3
» Element 0
» Element 1
¥ Element 2
Column 160
¥ Enemies
Size 7
» Element 0
» Element 1
» Element 2
» Element 3
» Element 4
» Element 5
» Element 6
| Level Prefab |\ Mapl | o]
Level Name |Level 1 |

(o]

With that, you have functional LevelData for the first level. Now let’s step through how
exactly your LevelData works.

LevelData’s inner workings

Take a closer look at Levell1Data in the Inspector, and expand Battle Data to see what's
inside.

© Inspector
LevellData

Script + LevelData
¥ Battle Data
Size
¥ Element 0
Column
¥ Enemies
Size
¥ Element 0
Type
Color
Row
Offset
¥ Element 1
Type
Color
Row
Offset
¥ Element 2
Type
Color
Row
Offset

BattleEvent

LTIEY

Remember that the game’s events are stored in an array of BattleEvents, as seen in the
Battle Data list.

¥ Element 0
Column 3
V¥ Enemies

o

For each battle event, Column represents the X position that triggers the event. For
example, the first battle event begins when the hero’s X position gets close to 30.
Exactly which kind of robots will mob the player are specified in the Enemies list.

V¥ Element 0
Type [Robot ;]
Color [Colorless &
Row 1 |
Offset -1.1 |

Each instance of EnemyData contains the following information:
» Type determines if the enemy will be a robot or a boss.

» Color sets the class when the enemy is a robot.

* Row and 0ffset define where the enemy spawns.

You can think of the map as a series of rows. When a robot spawns, its EnemyData’s row
variable determines at which row the spawn will occur. The offset value’s magnitude
depicts how far from the center the enemy will spawn, with 1.0 being half the width of
the screen.

For example, the robot will spawn to the right when the value is greater than @ and to
the left when the value is less than o.

Offset: -1.0 Offset: 1.1

Center of
screen

half screen width

4 SO x\\\ RN
- '("" ST \\\\\WM — \\\‘S&\“*‘&\
RUNNRRRNNRY M %\\l\\‘:\\\‘ =
; \\\\R'{\\\Y‘m ADNINNRNRRNSH

AR A AR P

Note that most spawn points are greater than 1.0 or less than -1.0. This is so enemies
spawn outside the visible area and walk into the scene rather than “magically”
appearing in the middle of it.

Offset: -1.0

Offset: -0.8
Olfset -1.2

; :~\

And now you know how LevelData is structured.

Looking at Level1Data, you can see that difficulty for each BattleEvent increases.
Initially, you get colorless robots and a couple of random strong ones, while the next
event spawns coppers, silvers and a few randoms. The final event spawns heavy-hitting
silvers, golds and randoms.

Arguably, the coolest thing here is that you can modify this ScriptableObject to provide
the difficulty and pace you want for the game; you can add and remove events and
robots to your heart’s desire.

Even though you have a perfectly functional LevelData asset, your game has no idea
how to use it. You need to modify some scripts to enable the reading and translating of
this data into commands that the game understands.

Open the CameraBounds script and find this line:

private Camera activeCamera;

Replace it with this:

public Camera activeCamera;

You changed the access modifier from private to public to allow other classes to access
the camera used by CameraBounds. This will come in handy later.

Save the script and open the GameManager script. It's still bare at this point, but you'll
soon add support for complex behavior such as enemy spawns and battle events.

Add the following to the top of GameManager.cs:

using System.Collections;
using System.Collections.Generic;

Nothing fancy here. Both libraries contain classes that you'll use later.
Next, add the following variables above Start():

//1

public LevelData currentlLevelData;
private BattleEvent currentBattleEvent;
private int nextEventIndex;

public bool hasRemainingEvents;

//2
public List<GameObject> activeEnemies;

K

public Transform[] spawnPositions;

//3
public GameObject currentLevelBackground;

/74
public GameObject robotPrefab;

These variables contain data about the current level.

1.

The first four variables are close collaborators. currentLevelData references the
data for the current level, while currentBattleEvent references the active battle
event from that data. nextEventIndex is an index of all battle events you’ll use to
fetch the next event. Lastly, hasRemainingIndex determines whether there are
available events in the level.

After loading a battle event, the activeEnemies list stores all enemies of that event,
while spawnPositions stores the position, in rows, where these enemies will spawn.

currentlevelBackground references the tile map for the level. You can't have a level
without it, otherwise, everyone will float in space!

Finally, robotPrefab, as its name suggests, references the robot's prefab. You will
need this to create copies of robots later.

Next, still in GameManager.cs, add the following method:

private GameObject SpawnEnemy(EnemyData data) {
//1
GameObject enemyObj = Instantiate(robotPrefab);

//2

Vector3 position = spawnPositions[data.row].position;

position.x = cameraBounds.activeCamera.transform.position.x +
(data.offset x (cameraBounds.cameraHalfWidth + 1));

enemyObj.transform.position = position;

//3
if (data.type == EnemyType.Robot) {
enemyObj.GetComponent<Robot>().SetColor(data.color);

//4
enemy0bj.GetComponent<Enemy>().RegisterEnemy();

return enemyObj;

}

This method creates an enemy according to the specifications of the EnemyData
parameter.

K

1. First, you create an enemy using robotPrefab. Remember that prefabs are like
templates for objects. By calling Instantiate, you create a new GameObject that has
all the data from that prefab.

2. Next, you calculate the spawn position using the row and offset values from the
EnemyData. You have to make sure the spawn point is outside the visible area so that
the enemy spawns offscreen. To do this, you multiply the offset by a little over half
the screen width, and add the resulting value to the current position of the camera.

3. You check if the enemy is a robot, and if so, you set its color accordingly. This check
will be more important later on, when you have more than one type of enemy in the
level.

4. Lastly, you call the enemy's RegisterEnemy method — you wrote this method in
Enemy. cs to keep track of the current number of active enemies.

Still in the same script, add the following method that loads a battle event:

private void PlayBattleEvent(BattleEvent battleEventData) {
//1
currentBattleEvent = battleEventData;
nextEventIndex++;

//2
cameraFollows = false;
cameraBounds.SetXPosition(battleEventData.column);

//3
foreach (GameObject enemy in activeEnemies) {
Destroy(enemy);

activeEnemies.Clear();
Enemy.TotalEnemies = 0;

//4
foreach (EnemyData enemyData in currentBattleEvent.enemies) {
activeEnemies.Add(SpawnEnemy(enemyData));
}
}

You’ll use thePlayBattleEvent method to load a battle event, using the data from its
battleEventData parameter.

1. Assigns the battle event to the currentBattleEvent variable to preserve
battleEventData so you can use it elsewhere, and then increments nextEventIndex
since the current event was just loaded.

2. Prevents the hero from escaping the battle event by setting the camera’s X position
to the event’s column.

3. Destroys remnants of prior battle events by obliteratingGameObjects in
activeEnemies then it resetting TotalEnemies to @ to specify that there are no
enemies in the scene.

4. Assembles a mechanical army of doom! First, it goes through the list of enemies in
currentBattleEvent and plugs each EnemyData from it into the SpawnEnemy method,
which you created earlier. Next, it repopulates the activeEnemies list with the
newly-created enemies.

You have the means to load new battle events, but what happens when the last droid
dies? Even if the hero beats up and destroys all enemies in the scene, the camera is
locked in to position, trapping the hero forever! Thankfully, it doesn't take much to free
the hero from this invisible prison.

Add the following method to GameManager.cs:

private void CompleteCurrentEvent() {
currentBattleEvent = null;

cameraFollows = true;
hasRemainingEvents = currentLevelData.battleData.Count >
nextEventIndex;

}

Here you complete the current battle event by clearing the currentBattleEvent variable
and allowing the camera to follow the hero again. You also update the Boolean
hasRemainingEvents to dictate if there are more battle events ahead.

Next up, you’ll create the mechanism that automates the flow of battle events by
making use of EnemyData and BattleEvent.

Insert the following code block at the start of the Update() method:

//1
if (currentBattleEvent == null && hasRemainingEvents) {
if (Mathf.Abs(currentLevelData.battleDatal[nextEventIndex].column -
cameraBounds.activeCamera.transform.position.x) < 0.2f) {
PlayBattleEvent(currentLevelData.battleData[nextEventIndex]);

}

//2
if (currentBattleEvent !'= null) {
//has event, check if enemies are alive!
if (Robot.TotalEnemies == 0) {
//no0 more enemies;
) CompleteCurrentEvent();
}

K

The above code handles the current state of the game at every frame. More specifically,
it:

1. Checks if the game isn’t running a battle event and if there are still events to play
through. If there are, it checks if the next BattleEvent’s column value is close enough
to the hero to trigger it. When it’s close enough, it loads the next event with the
PlayBattleEvent method.

2. Checks if all robots are dead when there’s an actively loaded battle event. If all are
dead, it calls CompleteCurrentEvent.

Both EnemyData and BattleEvent need to be loaded into the game before they can be
used, so add this method to the same script:

private IEnumerator LoadLevelData(LevelData data) {
//1
cameraFollows = false;
currentLevelData = data;

//2
hasRemainingEvents = currentlLevelData.battleData.Count > 0;
activeEnemies = new List<GameObject>();

//3
yield return null;
cameraBounds.SetXPosition(cameraBounds.minVisibleX);

//4
currentLevelBackground = Instantiate(currentLevelData. levelPrefab);
yield return new WaitForSeconds(0.1f);

//5
cameraFollows = true;

}

The LoadLevelData method essentially loads a LevelData asset. Note that it’s an
IEnumerator that will be used in a coroutine. The reason is that it allows for easier code
sequence checking and makes it simpler to add a loading screen in the future. Here’s a
section-by-section explanation:

1. You disable the camera’s movement and store a reference to the current level data.

2. Next, you check if there are battle events in the level, and store the result in
hasRemainingEvents. You also initialize the activeEnemies list so it can be used
later.

3. yield return null pauses the method for one frame, allowing other scripts to run
before executing the next line. In this case, you use it to allow the CameraBounds
script to perform its Start method before setting its X position to the minimum
visible value.

4. You create the tile map referenced by currentLevelData. levelPrefab and store it in
the currentLevelBackground variable. To give it time to initialize, you pause the
coroutine again for a few milliseconds.

5. With the level completely loaded, you allow the camera to move once again.
Next, add the following lines to the end of the Start method:

nextEventIndex = 0;
StartCoroutine(LoadLevelData(currentLevelData));

Here you place loading the level near the top of the GameManager’s to-do list when the
game begins: When GameManager executes its Start method, you reset
nextEventIndex to @ and load the LevelData asset referenced by the currentLevelData
variable.

Save the script and return to Unity. There's one last thing to do before everything works
correctly. You need to add the spawn rows — these markers identify the rows where the
enemies can spawn.

Create a new empty GameObject and make it a child of MyGameManager. Rename it
SpawnRow0. In the Inspector, click the multi-colored cube icon next to its name and
select the blue oval-shaped label icon. Reset its Transform and set its Position to (X:0,
Y:0, Z:2).

= Hierarchy & -= it Scene = © Inspector | FE=]
CreateafCr 2 Shaded E [+ SpawnRow0 [_] Static ¥
v Q Game
» MyHero Tag | Untagged 4| Layer| Default |
¥ MyGameManager v Transform Q5 %
Main Camera IPosition X 0 Y 0 Z|2
LeftCamBounds Rotation X0 Y 0 zZ 0
Scale X1 Y|l Z1

RightCamBounds
SpawnRow0

[Add Component]

You’ve just created the first marker. Next, duplicate SpawnRowO, rename it to
SpawnRow1 and set its Position to (X:0, Y:0, Z:1).Repeat these steps and set as per
below:

» SpawnRow?2 at Position (X:0, Y:0, Z:0)

K

* SpawnRow?3 at Position (X:0, Y:0, Z:-1)

» SpawnRow4 at Position (X:0, Y:0, Z:-2)

The SpawnRows should be visible in the Scene view as blue label icons.

= Hierarchy & .= | #Scene |

| Create ~| (G=ATl
v & Game
» MyHero
¥ MyGameManager
Main Camera

LeftCamBounds
RightCamBounds

SpawnRow2

SpawnRow3
SpawnRow4

The markers are bound to the camera because the spawn points should always be at the
center of the camera’s view.

Now to configure the GameManger to actually use these rows. In the Inspector for the
GameManager script, set the Size of the SpawnPositions list to 5. Assign SpawnRow0
to SpawnRow4 as the Elements of SpawnPositions, as shown below:

© Inspector | & =]
~ MyGameManager | [] static
Tag | Untagged + | Layer| Default 3
» .~ Transform o %
v i [¥ Game Manager (Script) s
Script . GameManager (o]
Actor |« MyHero (Hero) | o
Camera Follows
Camera Bounds |+ Main Camera (CameraBound| ©
Current Level Data None (Level Data) | o

Has Remaining Events | |
» Active Enemies
¥ Spawn Positions

Size 5

Element 0 | ASpawnRow0 (Transform) | @

Element 1 | ASpawnRowl (Transform) | ©

Element 2 | ASpawnRow? (Transform) | ©

Element 3 | ASpawnRow3 (Transform) | ©

Element 4 | ~SpawnRow4 (Transform) | ©
Current Level Backgro None (Game Object) |0
Robot Prefab 'None (Game Object) | o

There are multiple ways to assign an array in the Inspector. One of my favorites is to
select all the objects you want then drag the group to the list’s label.

K

Beat ’Em Up Game Starter Kit Chapter 7: Pompadroid’s Playbill

© Inspector
4 rMyGamel\hnager | [Static ¥
Tag|untagged ¢|layer|Default]

Next, set the GameManager’s Robot Prefab field to the EnemyRobot prefab you
created and set Current Level Data to Level1Data.asset in Assets/LevelData.

© Inspector

¥ 'MyGameManager | [Static ¥
Tag|Untagged 4| Layer|Default 4]

Save the scene and project then play the game. Walk far enough to the right to trigger
a battle event and watch as those nasty droids spawn on both sides. They look eager to
terminate you!

h raywenderlich.com 273

N

-

Try to escape. The camera won’t budge! You have nowhere to go because you can’t

move past the edge of the camera’s frame, at least not until you lay waste to those
miserable hunks of metal and circuitry.

— 2 r,f «*’ i

r”

You should allow yourself to fall prey to the droids at least once so that you see what
happens. You’ll spend your time being dead on the floor — you haven’t added a “game
over” screen yet. You’ll do that later, by the way.

K

And also make sure you emerge victorious against these rust buckets at least once, so
you can see how you’re free to wander again — at least until you walk into the next
battle event.

There’s a subtle bug when you finish a battle event: The camera instantly centers over
the hero’s position. It could cause a problem for the player’s visual orientation and at
the very least hurts the eyes!

The best fix is to smoothly ease the camera back to center on the hero’s position rather
than snapping to it. This approach is friendlier to the eyes and looks cleaner.

Open CameraBounds.cs and add the following variable to the top:

public float offset;

This is the offset from the center of the camera that you’ll use to smooth out the
camera’s change in position. An offset value of @ means that the camera is centered on
the hero.

Still in the same script, add the following methods:

//1

public void CalculateOffset(float actorPosition) {
offset = cameraRoot.position.x — actorPosition;
SetXPosition(actorPosition);
StartCoroutine(EaseOffset());

//2

K

private IEnumerator EaseOffset() {
while (offset != 0) {
offset = Mathf.Lerp(offset, 0, 0.1f);
if (Mathf.Abs(offset) < 0.05f) {
. offset = 0;

yield return new WaitForFixedUpdate();

1. CalculateOffset computes for the horizontal distance between the actorPosition
parameter and the camera’s X position. This distance becomes the value of the
offset. Next, you move the camera to the actorPosition value and start a coroutine
with the Ease0ffset method.

2. EaseOffset gradually reduces the value of offset. Every loop decreases the offset
until it reaches a value less than 0. 05, in which cases, it forces the offset to become
0. The line yield return WaitForFixedUpdate(); forces this coroutine to pause and
continue only after every call to FixedUpdate, which Unity does regularly.

Next, edit the SetXPosition method by replacing this:

trans.x = Mathf.Clamp(x, minValue, maxValue);
With this:
trans.x = Mathf.Clamp(x + offset, minValue, maxValue);

When setting the camera's X position, you now use the value of offset to compute for
its final position. If the offset is 0, then the camera will behave as it did before, when it
centered on and followed the hero. Otherwise, it will use the value of offset to displace
the camera by a certain distance from the hero's position. The camera will then
gradually move towards the player as the offset decreases.

Save the CameraBounds script and open GameManager.cs. Find the
CompleteCurrentEvent method then find cameraFollows = true; and add this line after
it:

cameraBounds.CalculateOffset(actor.transform.position.x);

This calculates the offset at the end of every battle event — this is the point where the
camera should resume its default of following the hero.

Save the script, return to Unity, press play and take out some aggression on those
droids. Notice how the camera eases back to the hero’s position after the last enemy
falls.

K

You have a functional LevelData script. What’s next? Well, how about giving the hero
some heroic fanfare when he enters the scene?

Heros deserve heroic entrances

To make a dramatic entrance, the hero will use the Walker script to navigate the map.
His entrance will be automatic and scripted, so the player won’t be able to interrupt or
stop the animation.

First, you need to modify the Hero script so the hero can be “walked” by the Walker
script. Open Hero.cs and add the following variables to the top:

public Walker walker;
public bool isAutoPiloting;
public bool controllable = true;

The walker variable is a reference to a Walker script that enables the hero to be
“walked” around automatically. isAutoPiloting serves as a flag that disables the
processing of character movement when the hero is under the walker's control, and
controllable is a variable that flags the controls and disables player input when the
condition is false.

Add the following namespace usage at the top of the class, along with the other using
statements, if the script doesn't already have it:

using System;

This will enable the class to use the System.Action callbacks.

K

Add the following methods to the bottom of the class:

//1
public void AnimateTo(Vector3 position, bool shouldRun, Action callback)

{
if(shouldRun) {

Run();
else {
Walk();
b
walker.MoveTo (position, callback);
b
//2
public void UseAutopilot(bool useAutopilot) {
isAutoPiloting = useAutopilot;
walker.enabled = useAutopilot;
b

1. AnimateTo is a method that first checks whether the hero should walk or run
towards its target by using the shouldRun parameter, and then it calls the Walker’s
MoveTo by using the target position where the hero should move to. The callback
parameter is a method that is invoked when the walking is done.

2. UseAutopilot is a method that enables or disables the Walker with the
useAutopilot input parameter. It also sets the isAutoPiloting Boolean.

Find the FixedUpdate method then find this block at the top:
if (lisAlive) {

return;

¥

Surround everything underneath (in FixedUpdate) with this if statement:

if (!isAutoPiloting) {
//01d code goes here
}

Remember the closing brace for the if statement! This is a check that prevents any
movement calculations from happening when the hero is under Walker control.

Add the following above float h = input.GetHorizontalAxis (); inthe
Update()method:
if (isAutoPiloting) {

return;

}

K

This prevents the script from performing actions such as jumping or punching during
the hero’s dramatic entrance! Save Hero.cs and open CameraBounds.cs.

Remember how the camera has a collider at each edge of the screen to prevent the hero
from walking out of the camera’s view? You need to disable these colliders to allow the
dramatic entrance.

Add the following method in CameraBounds.cs:

public void EnableBounds(bool isEnabled) {
rightBounds.GetComponent<Collider>().enabled = isEnabled;
leftBounds.GetComponent<Collider>().enabled = isEnabled;

¥

This method toggles the enabled state on both bound colliders and turns them off when
the hero’s dramatic entrance is triggered. They are enabled once the hero’s entrance is
done.

You also need to make the hero’s walk-in position relative to the left edge of the
camera’s frame, regardless of the camera’s current aspect ratio. To achieve this, you’ll
need to compute the walk-in position every time the game runs.

Still in CameraBounds. cs, add the following variables:

public Transform introWalkStart;
public Transform introWalkEnd;

These reference the walk-in start and end transforms associated with the walk-in
animation.

K

Insert the following at the end of the Start method:

//1

position = introWalkStart.transform.localPosition;

position.x = transform.localPosition.x — cameraHalfWidth - 2.0f;
introWalkStart.transform. localPosition = position;

//2

position = introWalkEnd.transform.localPosition;

position.x = transform.localPosition.x — cameraHalfWidth + 2.0f;
introWalkEnd.transform. localPosition = position;

1. First, you move the walk-in start marker two units to the left of the camera’s left
edge.

2. Second, you move the walk-in end marker two units to the right of the camera’s left
edge.

Save CameraBounds.cs and open GameManager.cs, which is where you'll handle the
hero’s entrance and all its logic.

Add the following variables:

public Transform walkInStartTarget;
public Transform walkInTarget;

You added two transform references that you’ll use to mark the hero’s starting and
ending points.

Still in GameManager. cs, add the following method:

private void DidFinishIntro() {
actor.UseAutopilot (false);
actor.controllable = true;
cameraBounds.EnableBounds (true) ;

}

This method will serve as the callback parameter for AnimateTo, meaning that you’ll
trigger this method when the entrance animation finishes. It turns off the hero’s
autopilot and reinstates the colliders at the edge of the camera’s view.

Find the LoadLevelData method. Add the following code before the yield return new
WaitForSeconds(0.1f); line:

cameraBounds.EnableBounds(false);
actor.transform.position = walkInStartTarget.transform.position;

You disable the camera’s edge colliders and move the hero to the walkInStartTarget
position.

K

Find yield return new WaitForSeconds(@.1f); and add these lines just below it:

actor.UseAutopilot (true);
actor.AnimateTo(walkInTarget.transform.position, false, DidFinishIntro);

After the brief pause, you engage the hero’s autopilot and walk him toward the target
position.

Save the GameManager script and return to Unity to assign references that will make
the walk-in animation work.

First, you need start and end markers.

Create a new empty GameObject named IntroStartMarker and make it a child of
MyGameManager. Set its icon as the red oval, reset its Transform and set its Position
to (X:-11.8, Y:0, Z:0).

= Hierarchy & -= © Inspector .
]v cz‘:;;'ln::m“ o [154 IntroStartMarker | [[] Static ¥
» MyHero ag [untagged ™ Layer[Default ™
¥ MyGameManager Vv .~ Transform
Main Camera Position x[-118 |Y[0 'zlo
LeftCamBounds Rotation X0 ‘Yo 'zo
RightCamBounds Scale X1 ¥ [1 1z[1
SpawnRow0
SpawnRowl Add Component]
SpawnRow2
SpawnRow3
DAWNKOW4

IntroStartMarker

Duplicate IntroStartMarker and rename the duplicate to IntroEndMarker. Reset its
Transform and set its Position to (X:-7.18, Y:0, Z:0).

= Hierarchy © Inspector

«| eeanr
| Create - | (@rAn || @® | ¥ [introEndMarker | [static

v Q Game* =
» MyHero Tag | Untagged 4 | Layer| Default 2

¥ MyGameManager ¥ .~ Transform
Main Camera Position x[-718 |Y[0 Fa0)
LeftCamBounds Rotation X 0 Iy /o 1z/o
RightCamBounds Scale x[1 ¥ [1 FAE
SpawnRow(0
SpawnRowl | Add Component |
SpawnRow2
SpawnRow3
SpawnRow4
IntroStartMarker
IntroEndMarker

=L

Go to GameManager in the Inspector. Assign IntroStartMarker to the Walk In Start
Target field and IntroEndMarker to the Walk In Target field.

v i [¥ Game Manager (Script) o %
Script . GameManager (o]
Actor « MyHero (Hero) |0

Camera Follows 4

Camera Bounds

« Main Camera (CameraBound ©

Current Level Data | [LevellData (LevelData)
Has Remaining Events [|

b Active Enemies

» Spawn Positions

| o

Current Level Backgro None (Game Object)

| o

Robot Prefab \# EnemyRobot

Walk In Target

Walk In Start Target .\ IntroStartMarker (Transform
| A IntroEndMarker (Transform)

In the CameraBounds component of the MainCamera, set the value of the Intro Walk
Start and the Intro Walk End fields to IntroStartMarker and IntroEndMarker,

respectively.

v « ¥ Camera Bounds (Script) Q5 %
Script CameraBounds o
Min Visible X 5 |
Max Visible X 96 |
Camera Half Width 0 |
Active Camera 'None (Camera) e
Camera Root | ~MyGameManager (Transforn| ©
Left Bounds ' A LeftCamBounds (Transform) ©
Right Bounds | ~RightCamBounds (Transforn ©
Offset 0 |
Intro Walk Start A IntroStartMarker (Transform| ©
Intro Walk End . IntroEndMarker (Transform) ©

Select MyHero in the Hierarchy. Add a Walker component and a NavMeshAgent
component to MyHero. Set the Nav Mesh Agent field of the Walker component to the
NavMeshAgent component.

¥ MyHero | [] Static ¥

Tag [Hero ;] Layer[Friendly ;]

b~ Transform @ = %

>« |¥ Hero (Script) o %

» ¢ ¥ Box Collider @ = %

b % Rigidbody @ = %

v o ¥ Walker (Script) @ =

Script + Walker (0]
Nav MeshfAgent MyHero (Nav Mesh Agent)

IIP ~ ¥ Nav Mesh Agent ia

Assign the Walker component to the Hero component’s Walker field.

v = ¥ Hero (Script) @ =
Script + Hero (o]
Base Anim '35 HeroAnimator (Animator) | ©
Body | MyHero (Rigidbody)]
Shadow Sprite | = ShadowCharacter (Sprite Rer ©
Speed 2 |
Is Grounded (]

Base Sprite | = HeroSprite (Sprite Renderer) @
Is Alive ¥4

Max Life 1100 |
Current Life 1100 |
Attack Damage ‘10]
Walk Speed 12 |
Run Speed 5]
Can Run 4

Input | « MyGameManager (InputHanc, @
Jump Force 1750

Walker « MyHero (Walker)

Is Auto Pilapng L]

Controll 4

» i ¥ Bdx Collider @

> A _Rkidbody @ = %

b ¥ Walker (Script) -

| >~ ¥Nav Mesh Agent o

Save the scene and run the game. Before you start, the hero marches into the scene
from outside the camera’s frame to a position inside the camera’s view. Then he returns
to the idle state and should be under your control.

Play the game until you destroy all the droids in the third battle event. Oddly enough,
the camera continues to follow the hero. The game gives no credence to the fact that
you just kicked some robot butt and therefore completed the level.

K

Cue the dramatic exit

’Iill__________________!:él__f::_____________:' B

'..,"_ \\ ,;; N\ \\\ S

:‘=~

You need balance in your life, and games are no different. When there’s a dramatic
entrance, there should be some kind of fanfare to celebrate your victorious exit.

Similarly to how you scripted the hero’s grand entrance, you’ll set up a dramatic exit
when the player finishes a level. The main difference is that the hero will be in a hurry
to leave.

Open GameManager.cs and add the following variable:

public Transform walkOutTarget;

This references the hero’s exit point. Whenever the hero completes a level, he’ll run to
this transform's position.

Add these methods to GameManager.cs:

//1

private IEnumerator HeroWalkout() {
cameraBounds.EnableBounds(false);
cameraFollows = false;

actor.UseAutopilot (true);

actor.controllable = false;

actor.AnimateTo(walkOutTarget.transform.position, true,
DidFinishWalkout) ;

yield return null;

//2
private void DidFinishWalkout() {
Debug.Log("Level Completed!");

cameraBounds.EnableBounds (true) ;
cameraFollows = false;
actor.UseAutopilot (false);
actor.controllable = false;

1. The HeroWalkout method is an IEnumerator that will be used in a coroutine.
Similarly to the LoadLevelData method, it disables the camera’s edge colliders and
movement and puts the hero on autopilot. It then walks the hero to a point outside
the camera’s frame.

2. The DidFinishwWalkout method will be the callback whenever the hero has exited the
frame. It re-enables the edge colliders and puts the hero back under the player’s
control. Then it prints Level Completed to the console.

Still in the same script, insert the following code at the end of the
CompleteCurrentEvent method:

if (!hasRemainingEvents) {
StartCoroutine(HeroWalkout());
}

You call HerowWalkout when the hero emerges victorious after completing all the battle
events.

Save the script and open CameraBounds.cs. You’ll change the exit marker’s transform
so it’s relative to the right edge of the camera’s frame.

Add the following variable:
public Transform exitWalkEnd;
This references the transform of the hero’s exit marker.
Still in CameraBounds. cs, insert the following lines at the end of the Start() method.

position = exitWalkEnd.transform.localPosition;
position.x = transform.localPosition.x + cameraHalfWidth + 2.0f;
exitWalkEnd.transform.localPosition = position;

You simply move the exit marker two units to the right of camera’s right border.
Save the CameraBounds script and return to Unity to assign the Walk Out Target field.

Duplicate IntroEndMarker and rename the duplicate to ExitMarker. Set its Position to
(X:12.8, Y:0, Z:0).

© Inspector | B -=

- ¥ ExitMarker [Static ¥

Tag | Untagged 4+ | Layer| Default aal

¥ . Transform @ = %
| Position x128 |v[0 z'0
Rotation X 0 YO Z0
Scale X1 Y|l Z|1

Select MyGameManager in the Hierarchy. Notice the intro markers on the left side of
the scene and the exit marker on the right.

Assign ExitMarker to the Walk Out Target field of GameManager.

v i |¥ Game Manager (Script) @ = %
Script . GameManager o}
Actor « MyHero (Hero) | o
Camera Follows 4
Camera Bounds |+ Main Camera (CameraBound ©
Current Level Data | i Level1Data (LevelData) | o

Has Remaining Events| |
P Active Enemies
¥ Spawn Positions

Current Level Backgro None (Game Object) e
Robot Prefab |\ EnemyRobot o
Walk In Start Target | . IntroStartMarker (Transform ©
Walk In Target A IntroEndMarker (Transform) ©

(o]

I Walk Out Target ~ ExitMarker (Transform) I

Now assign it to the Exit Walk End field on the Main Camera’s CameraBounds
component, like this:

v « [¥ Camera Bounds (Script) @ = %
Script CameraBounds (o]
Min Visible X 5 |
Max Visible X 96 |
Camera Half Width 0]
Active Camera 'None (Camera))
Camera Root | ~MyGameManager (Transforn| ©
Left Bounds | A LeftCamBounds (Transform)| ©
Right Bounds ' ARightCamBounds (Transforn ©
Offset 0 |
Intro Walk Start '~ IntroStartMarker (Transform ©
Intro Walk End A IntroEndMarker (Transform) @

I Exit Walk End A ExitMarker (Transform) ﬂ

Save the scene and run the game. Punch your way through the battle events and watch
how the hero runs out of frame when you're done! Check the console to confirm your
awesomeness.

Congratulations, you’ve just finished creating a level for Pompadroid! What are you
going to do now? Play that level again and again until you’ve had your fill of metal
bashing? No. You’re going to add more levels.

The intent of the design of the LevelData class is that each instance represents a single
level. So, you can create more levels simply by creating more LevelData
ScriptableObjects.

Import Level2Data.unitypackage from the Unity Packages folder, which contains
LevelData for the second level. It also contains another copy of LevelData.cs, which is
the same script you've already imported.

Assign Level Prefab of Level2Data to the Map1 prefab located in Assets / Prefabs.

© Inspector | &=
Level2Data @ =
::I | Open |
Script LevelData (o]
b Battle Data
|Level Prefab #Map1l o|
Level Name Level 2

You’ll use the same prefabs as you did for the first level.

Now that you have the data for the second level ready to go, the GameManager needs a
way to start it. Open GameManager.cs and add the following line to the top of the
script:

using UnityEngine.SceneManagement;
SceneManagement contains methods to handle scene loading and unloading.
Still in the same script, add the following variables:

public LevelDatal]l levels;
public static int CurrentLevel = 0;

The levels array will contain all the possible levels of the game. Levels will load based
on this array, one by one. The second variable, CurrentLevel, will store the player’s
current level. The next level will load based on this value.

K

Still in GameManager. cs, in the Start method, find this line:

StartCoroutine(LoadLevelData(currentLevelData));

And change it to this:

StartCoroutine(LoadLevelData(levels[CurrentLevell));

LoadlevelData() will use the levels array as its source for LevelData instead of using
currentLevelData.

Find the LoadLevelData(LevelData data) method. Then find the line
currentLevelBackground = Instantiate(currentLevelData.levelPrefab); and insert
the following before it:

if (currentLevelBackground !'= null) {
Destroy(currentLevelBackground);

This if statement destroys the currentLevelBackground whenever a level loads to
prevent multiple instances of the map from being stacked atop one another, which
could eventually crash the game.

You're almost done! Still in the same script, add this method:

private IEnumerator AnimateNextLevel() {
yield return null;
SceneManager.LoadScene("Game");

¥

This coroutine will simulate a temporary loading period. It’ll pause for a frame before
loading the game scene. It’s important because you’ll add animations that tell the
player they’ve completed a level in the future.

Next, find the DidFinishWalkout method. Replace this:
Debug.Log("Level Completed")
With this:

CurrentLevel++;

if (CurrentLevel >= levels.Length) {
Debug.Log("Game Completed!");
SceneManager.LoadScene(""MainMenu'");

} else {
StartCoroutine(AnimateNextLevel());

}

K

When the hero’s walkout animation ends, you increment CurrentLevel and check for
remaining levels in the levels array. If there are more levels, you reload the game using
the AnimateNextLevel() coroutine. Otherwise, it prints Game Completed and loads the
MainMenu scene.

Save this script and open MainMenu.cs.

Find the GoToGame () method, then find the line SceneManager.LoadScene("Game"); and
insert the following above it:

GameManager.CurrentLevel = 0;

This resets the CurrentLevel value in the GameManager script when the player presses
the play button in the main menu.

Save your scripts and return to Unity to add the two levels.

In MyGameManager, set the Levels array to a Size of 2 and drag LevellData to
Element 0 and Level2Data to Element 1.

v . ¥ Game Manager (Script) @ 3
Script GameManager (o]
Actor « MyHero (Hero) | ©
Camera Follows (v
Camera Bounds « Main Camera (CameraBound ©
Current Level Data [LevellData (LevelData) | ©

Has Remaining Events| |
b Active Enemies
b Spawn Positions

Current Level Backgro None (Game Object) | ©
Robot Prefab ¢ EnemyRobot | ©
Walk In Start Target A IntroStartMarker (Transform ©
Walk In Target A IntroEndMarker (Transform) ©
Walk Out Target A ExitMarker (Transform) (o]
Levels

Size 2

Element 0 & LevellData (LevelData) | ©

Element 1 [g Level2Data (LevelData) | ©

Run the scene again and finish the level. When you’re done, you should get a new level
and the hero should strut in as he did before.

You can tell it’s a new level because the first battle event spawns different enemies than
you saw before. Also, the second level only has two battle events.

K

Once you clean those droids’ clocks — by winning both battle events — the game
should print Game Completed to the console and load the MainMenu scene.

Display 1
Nd cameras rendering

Touch to Start

©
|| Clear || Collapse | Clear on Play | Error Pause

0 Game Completed!
UnityEngine.Debug:Log(Object)

Where to go from here?

Congratulations, you took Pompadroid from an interesting setting to a real game! It
gives the hero suitable entrances and exits, and there are now objectives and various
waves of enemies.

It takes a lot of work to create levels through ScriptableObjects, but the result is
dynamic and it’s easy to make new levels by making a few adjustments. It’s a flexible
system and easier to manage than hand coding every.single.level.

To take it a step further, you could create more LevelData assets and add their
references to the GameManager to make more levels, changing up the battle events as
you do.

To recap what you learned:
» Tinting to visually differentiate enemy classes
» Writing methods that tint and modify enemies’ attributes

» Storing level data with ScriptableObjects

K

* Creating and implementing battle events
» Loading a level’s ScriptableObject and spawning enemies as needed
» Animating the hero’s entrance and exit animations

o Implementing multi-level support for Pompadroid so you can play through multiple
levels

In the next chapter, you’ll add more complex animations to the hero so he isn’t a one-
trick pony — you’ll be able to perform a flurry of different attacks, such as jump attacks,
run attacks and a serious three-punch combo! Bots beware.

or 8: Power Attacks

You know what makes thrashing robots more satisfying? When you can do it with some
style. I’'m talking about combination attacks and knockouts and sparks flying.

This chapter is all about adding features to the game, so you can expect a lot of jumping
between scripts, the editor and animator windows, and game play. Nothing unfamiliar
lies ahead, but there are many tasks to do. You should be able to move through things
pretty quickly now!

In this chapter, you’ll:

Define a new AttackData class to process attacks

Implement the hero’s droid-bashing combo attacks: jump, run, and triple punch.
Implement knockdown and get up behavior for hero and enemy.

Tighten up your code and fix some bugs.

Add a hit effect and hurt threshold to help the hero overcome an embarrassing
weakness.

Set yourself up for a bit of time at your desk and get to it!

h raywenderlich.com 292

Beat ’Em Up Game Starter Kit Chapter 8: Power Attacks

The rules of engagement

The pompadoured protagonist isn’t exactly what you’d call formidable. Well, maybe if
you were a can of hair spray.

And let’s face it. He’s got a weak punch!

Normal Attacks will comprise the basic punches. They are weaker than their special
counterparts, but can be sequenced together to create a string of attacks.

Special Attacks comprise the run and jump attacks, and they require special conditions
to activate. They are stronger than normal attacks but also one-hit wonders that cannot
be sequenced.

Before adding the complex attacks, you’ll need to modify the attack code in the actor
classes. Punching is about to get more intricate!

Attack overview

The first component is pushback force, which nudges the actor that receives a punch
backward.

h raywenderlich.com 293

How far an actor moves back depends on how much pushback force is applied. Higher
pushback means the hero gets more space to breath after punching a droid — useful
when multiple enemies attack.

The next component is knockdown, which you’ll use to guarantee certain punches
result in a KO.

4‘5

o

oy
o

Of course, there will be variables to store damage dealt, pushback force and whether the
punch returns a knockout.

If you accounted for all of the hero’s attacks, you’d end up with 15 variables to track.
Sounds messy. Hence, you’ll create a new AttackData class to store these values, rather
than storing them in the Hero class.

Amping up the attack

Open Actor.cs and add the following class declaration at the bottom of the file, outside
the Actor class, underneath the last closing bracket:

[System.Serializable]

public class AttackData {
public float attackDamage = 10;
public float force = 50;
public bool knockdown = false;

AttackData contains the attack’s damage value, its pushback force value, and a
knockdown flag. This class also has a Serializable attribute to make its variables visible
in the Inspector.

Add the below to the top of the Actor class, beneath the other variables:
public AttackData normalAttack;

normalAttack will store the basic attack values for all actors.

K

Currently, the game relies on HitActor from the Actor class to calculate damage. You’ll
move this function to another method and add pushback to the attack calculation.

Add the following method to the Actor class:

public virtual void EvaluateAttackData(AttackData data, Vector3
hitVector, Vector3 hitPoint) {

body.AddForce(data.force * hitVector);
) TakeDamage(data.attackDamage, hitVector);

EvaluateAttackData will process the attack. It takes three parameters: the data of the
attack, hit direction as hitVector, and hitPoint, which is the position where the hit
took place.

This method applies the pushback force variable of the AttackData to the Rigidbody of
this Actor. Then it multiplies data. force by the direction of the hit, because the actor
needs to lunge backward in the opposite direction of the hero’s punch. Lastly, it
executes TakeDamage using the AttackData’s attackDamage and hitVector values.

Still in Actor.cs, find this line in the HitActor method:
actor.TakeDamage(attackDamage, hitVector);

Replace it with the following:
actor.EvaluateAttackData(normalAttack, hitVector, hitPoint);

HitActor will evaluate an attack by running this newly created EvaluateAttackData
method on the receiving actor.

Next, remove this variable from the Actor class:
public float attackDamage = 10;

You’ll use normalAttack to store the attack values for this class, making attackDamage
redundant.

Note: Removing this variable will result in bugs, as you should expect when you
mess with your code. If you play the game now, you’ll see Unity’s complaints —
ignore them because you’ll fix them next.

Save this script and open Robot.cs. In the SetColor method, replace all references to
attackDamage with normalAttack.attackDamage, for example, attackDamage = 2;
should become normalAttack.attackDamage = 2;.

K

And that should stop the complaints about the missing attackDamage variable.

Nice job! You just reworked the mechanics of punching in PompaDroid. Save Robot.cs
and return to Unity. Open up the Hero component. Looks like the initial attack values
were reset.

In the Hero component’s Normal Attack field, set Attack Damage to 10 and Force to
500. Click Play and test out that fancy new pushback feature by destroying a droid.
Wow! Just a little (ok a lot) too far.

The greater the force value, the further backwards the actor goes. 500 is obviously
excessive, so set Normal Attack to the Hero’s default values of Attack Damage to 5
and Force to 15.

Awesome work! You just finished AttackData and you’re about to give the hero some
sweet new moves, starting with a jump attack.

Creating the jump attack

During the attack, which is triggered by pressing the jump and attack buttons, the hero
will be unaffected by gravity until the animation ends. He’ll also knock out enemies in
front of him with a vicious punch attack.

Import Hero Jump Attack.unitypackage from the Unity Packages folder (in the Git
for this chapter). In here, you have assets for implementing the jump attack animation.

[oN) Import Unity Package
Hero Jump Attack
v [&5 Animation
v [G5 Hero
A0 hero_jump_attack.anim [NEW]|
v [&iimages
v [G Sprites
v [& Hero
¥/ s hero_jumpattack_00.png (NEW |
¥/ i hero_jumpattack_01.png [NEW |
¥/ i hero_jumpattack_02.png (NEW |
¥/ s hero_jumpattack_03.png (NEW |
[|li|hero_jumpattack_04.png NEW|

Time to add this new state to the HeroAnimator’s state machine.

Double-click hero_anim_controller inside Assets / Animation / Hero to open the
animator window. Drag the hero_jump_attack clip from the same folder to the grid
layout to create a new state. Rename this state to jump_attack.

Base Layer

Animation/Hero/hero_anim_con

Assets » Animation » Her(/
tz hero_anim_controller,

erials

dels i@ hero_attackl_anim
fabs i@ hero_hurt_anim
ipts. d hero_idle_anim

id hero_jump_fall
tion id hero_jump_land
\d hero_jump_rise

d hero_knockout_anim
i hero_run_anim
@ hero_walk_anim

Add a transition from jump_attack to jump_fall — this is the transition when the
jump_attack completes, and then the hero returns to the falling state.

Keep Has Exit Time checked and set Exit Time to 1.0, uncheck Fixed Duration and
set Transition Duration to 0.

© Inspector

= jump_attack -> jump_fall o

W= 1 AnimatorTransitionBase

Transitions Solo Mute
- | ﬁ#,

W jump_attack -> jump_fall

IHas Exit Time gl

¥ Settings

Exit Time 1
Fixed Duration O
Transition Duratior|0
Transition Offset 0

Interruption Source None |
Ordered Interrupticv/!

Add a transition from jump_rise to jump_attack. Uncheck Has Exit Time and Fixed
Duration then set Transition Duration to 0.

Also add conditions with CurrentChain Greater than 0 and EvaluatedChain Less than
1.

© Inspector
= jump_rise -> jump_attack o
W= 1 AnimatorTransitionBase

Transitions Solo Mute
- | %,
W= jump_rise -> jump_attack

I Has Exit Time - I

¥ Settings

Exit Time 0

Fixed Duration -

Transition Duratior 0

Transition Offset 0
Interruption Source None ™

Ordered Interruptic/v/
@00 0:05

Conditions
g] (Greaer 4] [0 J
- : |- Eeacm Ei=—af]

@&) |4 [%[* |

Create another transition from jump_fall to jump_attack. Set its parameters to the
same values you set from jump_rise to jump_attack.

K

© Inspector

e jump_fall -> jump_attack = %
s 1 AnimatorTransitionBase
Transitions Solo Mute
- 2,
W= jump_fall -> jump_attack
I Has Exit Time - I
¥ Settings
Exit Time 0.25

Fixed Duration -

Transition Duratior 0]
ransition Offset |0

Interruption Source None n

Ordered Interrupticly/
@00 g 0:05

Conditions

= [CurrentChain [+] [Greater][0
[Animaton/Hero/hero_anim controler.contolie |
= [EvaluatedChain [+] [Less i) 1
—

@ > |a|8]* [+ |

The transitions for the jump attack are done.

Next up, you’ll create the logic for the attack, so open Hero.cs and add the following
variables:

public bool canJumpAttack = true;
private int currentAttackChain = 1;
public int evaluatedAttackChain = 0;
public AttackData jumpAttack;

A player can only use the jump attack once per jump, and the canJumpAttack variable
tracks this. currentAttackChain and evaluatedAttackChain will trigger attacks for the
hero. The new jumpAttack variable contains the hit data for the jump attack.

You need to override OnCollisionEnter in the Hero class, so add this method:

protected override void OnCollisionEnter(Collision collision) {
base.0OnCollisionEnter(collision);
if (collision.collider.name == "Floor") {
canJumpAttack = true;

¥

Here you call the Actor’s OnCollisionEnter method using the
base.OnCollisionEnter(collision); line. When the object hit is named Floor, the
canJumpAttack value is reset, allowing the player to jump attack again.

K

Still in Hero.cs, add this method:

public void DidJumpAttack() {

body.useGravity = true;

DidJumpAttack handles what happens after a jump attack — the hero’s rigidbody is
affected by gravity once again.

You also need to replace the Attack() method with this:

public override void Attack() {

¥

//1
if (!isGrounded) {
//2
if (isJumpingAnim && canJumpAttack) {
//3
canJumpAttack = false;

//4

currentAttackChain = 1;

evaluatedAttackChain = 0;

baseAnim.SetInteger ("EvaluatedChain", evaluatedAttackChain);
baseAnim.SetInteger ("CurrentChain", currentAttackChain);

//5
body.velocity

= Vector3.zero;
body.useGravity =

false;

¥
} else {
//6
currentAttackChain = 1;
evaluatedAttackChain = 0;
baseAnim.SetInteger ("EvaluatedChain", evaluatedAttackChain);
baseAnim.SetInteger ("CurrentChain", currentAttackChain);

¥

The Attack method is responsible for determining which attack the hero will perform.

1.
2.

Checks if the hero is in the air — in other words, if he is currently jumping.

Checks more conditions. The hero must be in a jump animation but not have
previously performed a jump attack in this particular jump.

Performs the jump attack if section 1 and 2 pass. Here you set canJumpAttack to
false to prevent the hero from doing a second jump attack in this particular jump.

Sets currentAttackChain and evaluatedAttackChain to 1 and @, respectively, to
prevent chaining with other attacks.

5. Pauses the hero’s rigidbody in the air until the animation ends by setting
body.velocity to Vector3.zero and body.useGravity to false.

Okay, that wraps up what happens with the jump attack for the hero.

Now think about what you’ve done to the enemies’ reactions to the new attack. Oh,
that’s right — nothing. You should modify how those walking scrap heaps sustain
damage. Jump attacks should carry more weight than your basic punch.

Add this method to the script:

private void AnalyzeSpecialAttack(AttackData attackData, Actor actor,

Vector3 hitPoint, Vector3 hitVector) {
actor.EvaluateAttackData(attackData, hitVector, hitPoint);

}

Here you have a helper method that facilitates processing of special attacks. It calls the
actor’s EvaluateAttackData with parameters that give details about the hit that just
occurred.

Add this override method for HitActor to the Hero script:

protected override void HitActor(Actor actor, Vector3 hitPoint, Vector3
hitVector) {
if (baseAnim.GetCurrentAnimatorStateInfo(@).IsName("attackl")) {
base.HitActor (actor, hitPoint, hitVector);
} else if
(baseAnim.GetCurrentAnimatorStateInfo(@).IsName("jump_attack")) {
AnalyzeSpecialAttack (jumpAttack, actor, hitPoint, hitVector);

s

With this, you override Actor’s HitActor method. It executes after somebody gets
punched.

First, you check if the current Animator is in the "attackl" state. If so, the Actor’s
HitActor handles the hit. Otherwise, it checks if the current animator is in the
"jump_attack" state. If so, it processes the hit with AnalyzeSpecialAttack, taking
jumpAttack as a parameter.

Save Hero.cs and open HeroCallback.cs.
Add the following:

public void DidJumpAttack() {
hero.DidJumpAttack();
b

K

Beat ’Em Up Game Starter Kit Chapter 8: Power Attacks

Here you simply add a way for the HeroCallback class to trigger the hero’s
DidJumpAttack method. This is necessary to allow HeroAnimator, which has the
HeroCallback component, to trigger this method when it is done playing the
jump_attack animation.

Save the script and return to Unity. Time to set some references!

Open the Animation window and select the HeroAnimator in the Hierarchy to load
all the animations for the HeroAnimator GameObject. Set the animation to
hero_jump_attack.

m hero_attack1_anim
|create -| @A) |l| hero_hurt_anim
v _hero_idle_anim
hero_jump_attack
hero_jump_fall
hero_jump_land
hero_jump_rise
hero_knockout_anim
hero_run_anim
hero_walk_anim

Create New Clip...

[preview | ® |1e4| 1 | > | b1

Set DidJumpAttack as this event’s Function.

h raywenderlich.com 302

@® Animation
| Preview | @ |1 | 1 | > | p1 [ppi | E_1
I hero_jump_attack :l Samples [ZH ¢ i U# |

— O Inspector -

Q Animation Event o %,

» A AttackCollider : Position | I Function: [DidjumpAttack () :)
» A AttackCollider : Rotation

» i AttackCollider : Box Collider.Center

W AttackCollider : Box Collider.Enab (]
» i AttackCollider : Box Collider Size
» [1HeroSprite : Sprite

000000

[Add Property]

e

In the Hero component of MyHero, set the Attack Damage and Force of the Jump
Attack variable to 20 and 120. Also, check the Knockdown checkbox.

¥ Jump Attack
Attack Damage 20 |
Force {120 |
Knockdown 4

Save the scene and project then click Play. You can now perform a jump attack! Just
press jump, and while in the air, press attack!

Looks like the pushback force is working, but you haven’t implemented the knockdown
yet — you’ll get to that in a bit.

Make sure you let yourself take a punch from a droid during a jump attack. The hero
hangs in the air. Amusing and quite fixable. What’s happening is that the game did not
call DidJumpAttack, so gravity remains disabled for the hero.

You’ll fix this next as you add the knockout feature. Soon, all actors will be prone to
knockdowns, but they’ll be able to get back up and keep fighting too.

h
A _1';

Rise of the machines! (and the hero too)

Think about what should trigger the knockdown event for the hero. Obviously, he is
vulnerable when airborne (isn’t everybody?), so it makes sense that he should crash to

the ground when he takes a hit in the air.

K

S
N N
N N
\,
NN NN

You already have the falling down part — you’ll duplicate the death animations for that.
Get-up animations are the part that you’ll need to create.

Import the Robot and Hero Getup.unitypackage from the Unity Packages folder.

[JoX) Import Unity Package
Hero and Robot Getup
v ¥ &5 Animation
v &3 Hero
o hero_getup_anim.anim _NEW |
v [G Robots
o robot_getup_anim.anim {NEW]
v [Giimages
v [G Sprites
v &5l Hero
il hero_getup_00.png "NEW |
| hero_getup_01.png (NEw |
(¥ |ilhero_getup_02.png "NEW |
il hero_getup_03.png "NEW |
[/ lisi|hero_getup_04.png NEW |
[+ i hero_getup_05.png "NEW |
v & Robot
i robot_base_getup_00.png (NEW|
(¥ |mirobot_base_getup_01.png (NEW |
|si|robot_base_getup_02.png {NEW |
s robot_base_getup_03.png (New |
| robot_base_getup_04.png (NEw |
¥4 Iilrobot_base_getup_os.png [NEW]
i robot_belt_getup_00.png NEW |
[/ lisi|robot_belt_getup_01.png [New |
[+ |mirobot_belt_getup_02.png (NEW |
i robot_belt_getup_03.png (NEW |
i robot_belt_getup_04.png (NEW |
[+ |mirobot_belt_getup_05.png (NEW |
si|robot_smoke_getup_00.png (New |
i robot_smoke_getup_01.png (New |
| robot_smoke_getup_02.png (NEw |
i robot_smoke_getup_03.png (NEw |
il robot_smoke_getup_04.png NEW |
[V |mi|robot_smoke_getup_05.png (NEw|

Double-click hero_anim_controller from the Assets / Animation / Hero folder to
open the Animator window. Drag the hero_getup_anim into the grid layout, and
rename the newly created state getup.

Animation/Hero /hero_anim_cahtroller.controller

& Project

e [Do Ao| @0 ||| create -| & EILIES
V{?Favorites Assets » Anir‘ation » Hero
@AII Materials ¥
@AII Models @ hero_attackl_anim
©L Al Prefabs G
@AII Scripts @ hero_hurt_anim
@ hero_idle_anim
v Assets 4 hero_jump_attack
V&8 Animation hero iumn fa

Next, add two trigger parameters to this Animator, and name them Knockdown and
GetUp. These two will serve as the event triggers for the knockdown and get up
animations of the hero.

= Knockdown O
= GetUp (@)

Add a transition from knockout to getup. Keep Has Exit Time checked, set Exit Time
to 1, uncheck Fixed Duration and set Transition Duration to 0. Add a condition with
the trigger GetUp. Now the get-up animation will play after the knockout animation
finishes.

© Inspector
&% knockout -> getup S
s 1 AnimatorTransitionBase

Transitions Solo Mute

- @

== Lnockout -> getup

Has Exit Time 4

Exit Time |1]
Fixed Duration []
Transition Duratior 0 |
Transition Offset |0 |
Interruption Source None +]
Ordered Interrupticy/
:00 0:05 0:1j4q

Conditions

= |GetUp =]
Animation/Hero/hero_anim_controller.controller

Add another transition, this time from getup to idle. Use the same parameters as the
knockout to getup animation, without adding any conditions.

© Inspector
&= getup -> idle o
&&= 1 AnimatorTransitionBase

Transitions Solo Mute

- | @ %

W= getup -> idle

|_ Has Exit Time El

[1
Fixed Duration []
Transition Duratior|0f

Interruption Source None
Ordered Interruptic/y/

Select the transition from Any State to knockout and rename it death transition.
This name change is purely for convenience.

© Inspector
Auto Live Link | = death 1 'ﬂ"

W= 1 AnimatorTransitionBase

Transitions Solo Mute
%= |death transition @ %,
W= death
Has Exit Time O
¥ Settings
Exit Time [09

Fixed Duration O
Transition Duratior 0 |
Transition Offset |0 |

Interruption Sourcd None 3]
Ordered Interrupticlv/
Can Transition To $[_]

Preview source state | idle s]

Animation/Hero/hero_anim_controller.controller

@3 Project Conditions
N O
@0 | | | create -| @ [| l:||sA|ive [+] [faise 0|
¥7 Favorites I Assets » Animation » Hero ‘
(©) All Materials [B vacn anim m L+ -

Add another transition from Any State to knockout. As this is the second transition
between these states, the transition arrow will change to a multipoint arrow.

Select the transition with the name AnyState -> knockout.

Keep Has Exit Time unchecked. Uncheck both Fixed Duration and Can Transition To
Self and set Transition Duration to 0. Add a condition with the Knockdown trigger.

© Inspector
Auto Live Link ||| & AnyState -> knockout o
W 2 Transitions

Transitions Solo Mute
l death transition J
.- | @ #
W= AnyState -> knockout
IHas Exit Time ml |
¥ Settings
Exit Time 0.9
Fixed Duration O
Transition Duratior|0]
Transition Offset 0 |
Interruption Source None ™

Ordered Interrupticv!
Can Transition To ¢[_]

Preview source state | idle ™

0:10

Animation/Hero/hero_anim_controller.controller

@3 Project
.l &
0| || | create -| (@ [&S [* S conditions
V7 Favorites Assets » Animation » Hero
©) All Materials hero_anim_controller —m
QAII Models hero_attackl_anim

Great work! You’re finished with the states and transitions for the hero knockdown
effect.

Repeat for the droids

Now just do the same thing for the robot’s Animator Controller. Well, mostly the same.
Use the robot_anim_controller as the controller, and the robot_getup_anim as the
animation clip.

Use the same naming conventions for the robot controller and follow the same
structure.

Your robot state machine should look like this:

State positions may vary on your screen — just make sure that you’ve set up the
transitions correctly.

Coding for KOs

Now you just need to tell the game when to use those awesome animations.
Open the Actor.cs script and add the knockdownRoutine and isknockedOut variables:

protected Coroutine knockdownRoutine;
public bool isKnockedOut;

You’ll use knockdownRoutine, a coroutine, to animate the actor’s knockdown, and
isKnockedOut is a Boolean that tells you whether the actor is knocked down or not.

Insert the following condition at the start of the Die method:

if (knockdownRoutine != null) {
StopCoroutine(knockdownRoutine);

Here you stop any knockdown coroutines that are running when the actor dies.
Add the following method to the class:

public void DidGetUp() {
isKnockedOut = false;

¥

You’ll call DidGetUp when the actor’s get-up animation finishes. It resets the
isknockedOut Boolean to false.

K

Replace the contents of the CanBeHit method with the following:

public bool CanBeHit() {
return isAlive && !isKnockedOut;

}

CanBeHit checks if the hero is alive and not knocked down before allowing damage. An
actor cannot be damaged when it is on the floor, or worse, dead.

Next, add this to the Actor class:

protected virtual IEnumerator KnockdownRoutine() {
isKnockedOut = true;
baseAnim.SetTrigger("Knockdown");
yield return new WaitForSeconds (1.0f);
baseAnim.SetTrigger ("GetUp");
knockdownRoutine = null;

}
KnockdownRoutine handles the animation for the knockdown.

1. Sets isKnockedOut to true, then triggers the "Knockdown" event parameter in the
baseAnim Animator.

2. Pauses for 1 second then triggers the "Getup" animation and clears the
isKnockedoOut flag.

Your next move might trigger some errors, because you are adding more parameters to
the TakeDamage method — ignore them. You’ll fix them by the time you’re done here.

Change the declaration of TakeDamage from this:
public virtual void TakeDamage(float value, Vector3 hitVector) {
To this:

public virtual void TakeDamage(float value, Vector3 hitVector, bool
knockdown = false) {

This will add a third parameter, knockdown, to the method. You’re giving it a default
value of false, so you needn’t explicitly state that when calling this method.

With TakeDamage changed, you can use either TakeDamage(1@, Vector.one) or
TakeDamage(10, Vector3.one, false) and yield the same result.

However, you will need to explicitly enter true as the third parameter when you want to
set knockdown to true.

Save the Actor script and open Enemy.cs.

K

Find the below TakeDamage method signature:
public override void TakeDamage(float value, Vector3 hitVector) {
And replace it with:

public override void TakeDamage(float value, Vector3 hitVector, bool
knockdown = false) {

That should convince the compiler to stop complaining.
Find this at the bottom of the TakeDamage method:
base.TakeDamage(value, hitVector);
Change it to:
base.TakeDamage(value, hitVector, knockdown);

Here you enable the enemy to use the new knockdown parameter of the TakeDamage
method.

Save Enemy.cs and open Actor.cs again. In the EvaluateAttackData method, replace
this line:

TakeDamage(data.attackDamage, hitVector);
With this line:
TakeDamage(data.attackDamage, hitVector, data.knockdown);

This enables all actor instances to take the third parameter of the TakeDamage method,
assuming they aren’t overriding EvaluateAttackData.

Insert the following condition in the TakeDamage method, just after the closing } of the
if statement but before the else.

else if (knockdown) {
if (knockdownRoutine == null) {
Vector3 pushbackVector = (hitVector + Vector3.up*@.75f).normalized;
body.AddForce (pushbackVectorx 250);
knockdownRoutine = StartCoroutine(KnockdownRoutine());

}

You're just sliding this little conditional between the if check of death and the hurt
animation.

K

If the attack is not lethal and is a knockdown, this else if condition is used. When
knockdown is true, and no knockdown animation is currently playing, it exerts backward
and upward force and plays the actor’s KnockdownRoutine coroutine.

A -
g1

— ' o ‘;? Knockdown Force e
[=

Your next task will make the hero instantly fall to the ground when he takes a hit while
airborne.

e e e
w "‘3"' : =

Save Actor.cs and open Hero.cs, and add the following method override:

public override void TakeDamage(float value, Vector3 hitVector, bool
knockdown = false) {
if (!'isGrounded) {
knockdown = true;

¥
base.TakeDamage(value, hitVector, knockdown);
s

Here you override the Actor’s TakeDamage method. First you check if the hero is not
grounded. If isGrounded is false, you set the knockdown parameter to true.

When the get-up animation completes, you’ll need to trigger the DidGetUp method in
the Actor class. To do so, you need to add a way for your Animators to trigger this
method. So, you’ll make a new component for that.

Save Hero.cs and create a new C# script in Assets / Scripts named ActorCallback.
Replace its contents with the following:
using UnityEngine;

public class ActorCallback : MonoBehaviour {
public Actor actor;

public void DidGetUp() {
actor.DidGetUp();
I
}

K

Here you have a reference to a target Actor. Then in DidGetUp, you simply forward the
call to that actor’s DidGetUp method. As you can see, this script’s sole purpose is to
trigger the DidGetUp method of the actor assigned to it. It acts as a standalone

component that adds this single function to any GameObject. In this case, you will add
it to your Animator GameObjects.

Save this script and return to Unity. Select HeroAnimator in the Hierarchy and add an
ActorCallback. Set MyHero as its Actor variable.

© Inspector] " =
4 ¥ HeroAnimator [] Static =
Tag | Untagged +| Layer| Friendly :)
b~ Transform @ = %
» 35 ¥ Animator -
¥ = Hero Callback (Script) o 3%
Script HeroCallback (o]
Hero | « MyHero (Hero) o)
« Actor Callback (Script) @ = %
Script ActorCallback O
Actor |+ MyHero (Hero) 0

Drag an EnemyRobot prefab into the scene from the Prefabs folder. Select its
RobotAnimator and add an ActorCallback component. Set its Actor to EnemyRobot.

= Hierarchy | & .= € Game | #:Scene | .= ©Inspector | &=
L creae -| @rAT = ¥ RobotAnimator [Static ¥
v & Game- = Tag | Untagged + L | Ene: 0|
» MyHero ag 99 +| Layer| Enemy &
» MyGameManager Prefab | Select | Revert | Apply |
¥ EnemyRobot » ~ Transform @ = %
hadow(hara e ([]
RobotAnimator ; 3 » 3£ Animator [%,
HeroDetector

= Actor Callback (Script) C
Script ActorCallback
r '~ EnemyRobot (Robot) |

Add Component

3 Project | B console #8 Animator
| create |] —_~ EIEYES

Click Apply near the top-right corner of the Inspector to overwrite the existing prefab
with the instance you just modified.

Beat ’Em Up Game Starter Kit Chapter 8: Power Attacks

© Inspector
9 ¥ 'RobotAnimator

Tag|Untagged ¢ Layer

Prefab

Open the Animation window then select HeroAnimator in the Hierarchy. Select the
hero_getup_anim clip. At the last frame, add an Animation Event and set DidGetUp()
as its Function.

| =Hierarchy | | © Animation |
i A L E 1l
|| create +| AT D || [preview | @ | e | 14 | > | b1 [oh] . Animation Event

[vQGamer =|fherogeupanm +|sampes [12 l"l
|

Next, select the RobotAnimator in the Hierarchy, and in the Animation window, select
the robot_getup_anim clip. Also, add an animation event at the last frame with the
DidGetUp method.

| =Hierarchy | - © Animation | - | © Inspector |

| [create | @A ‘rmnmn“nm_?'l —V—" . Animation Event
v QGamer =] oborgewpanim __ +fsamples 12| 4] ‘

| 4

Delete the EnemyRobot in the Hierarchy. No worries, your changes committed to the
prefab!

Save the scene and project then test the game. Try the jump attack again. Ha! Poor
droid goes flying backward now.

h raywenderlich.com 315

‘ a. F‘h L] ng:‘:‘\\
Q m\\\\

Defiantly it sneaks towards you in spite of being knocked down. Creepy...

>
Z
o
7

.
.

/
”

o

A
o
7
r
o

Next, try jumping when a robot is about to punch you. When you get hit while in the air,
you’ll be either knocked down (which is good!) or fly out in the air. Yikes!

\W
Q

<

AN

N

Next, try moving while the hero is down. Whoah! That’s not right. Your logic is more or
less functional but bug-stricken, as you might expect when you change all the things.

Consider this your debugging intermission. Ahead of you are more features to add, and
you’ll get to them after you debug the last set of features. It is a good practice to debug
fully in between feature sets; it keeps your code clean and helps prevent superbugs
down the road.

Open Hero.cs and add the following variable declaration to the top of the script:
bool isHurtAnim;
This Boolean will track whether the current animation is the hurt clip or not.

Next, in the Update method, just after the isJumpingAnim assignment statement, add
the following line:

isHurtAnim =
baseAnim.GetCurrentAnimatorStateInfo(0).IsName("hurt");

This sets the isHurtAnim variable to true when the hurt animation plays.
Find this:

isAttackingAnim =
baseAnim.GetCurrentAnimatorStateInfo(@).IsName("attackl");

Replace it with:

isAttackingAnim =
baseAnim.GetCurrentAnimatorStateInfo(0).IsName("attackl") |
baseAnim.GetCurrentAnimatorStateInfo(@).IsName("jump_attack"

|
);
Two pipes (| |) are how you add an or condition to the statement, so now a

jump_attack animation evaluates as a type of attack. Remember this because you’ll do it
again soon.

While still in the Update method, find this:
if (jump &&
And replace it with this:
if (jump && !'isKnockedOut &&
This prevents the hero from jumping when he is knocked down.
Next, in the Update method, find this:

if (attack && Time.time >= lastAttackTime + attackLimit) {

K

lastAttackTime = Time.time;
Attack();
}

And upgrade it to this:

if (attack && Time.time >= lastAttackTime + attackLimit && !'isKnockedOut)
{

lastAttackTime = Time.time;
Attack();
}

Here you prevent the hero from attacking when he’s down.

Next, in the FixedUpdate method, find this after the line Vector3 moveVector =
currentDir x speed;

if (isGrounded && !'isAttackingAnim) {
And change it to this:

if (isGrounded && !'isAttackingAnim && !isJumpLandAnim && !isKnockedOut &&
lisHurtAnim) {

Here you disable the hero’s movement during a jump, and when hurt or knocked down.
While still in FixedUpdate method, find this line:

if (moveVector != Vector3.zero) {
Replace with the following:

if (moveVector !'= Vector3.zero && isGrounded && !isKnockedOut && !
isAttackingAnim) {

You’re preventing the hero from flipping back and forth while airborne or during a hit.
Next, add this override method:

public override bool CanWalk () {

return (isGrounded && !isAttackingAnim && !isJumpLandAnim && !
isKnockedOut && !isHurtAnim);
b

You’re overriding Canwalk from the Actor class — you might recall it determines when
the Walker class makes an actor walk. With this method, the hero will not walk while
knocked down or hurt.

Another scenario presents with a bug: when punched mid-air, the hero remains
immune to gravity. You need to reset the Rigidbody’s useGravity variable to true in this
case.

K

First, add the following using namespace statement to Hero.cs, if not already added:
using System.Collections;

You will use the IEnumerator interface for coroutines from the System.Collections
namespace.

Now add an override for the KnockedDownRoutine method:

protected override IEnumerator KnockdownRoutine() {
body.useGravity = true;
return base.KnockdownRoutine();

}

With that, you prevent the hero from getting stuck in the air by enabling gravity for the
hero’s Rigidbody before triggering the knockdown.

Save the Hero script and open Enemy.cs. Robots have a little zombie bug to zap.
In the Canwalk method, replace the return statement with the following:

return !baseAnim.GetCurrentAnimatorStateInfo(0).IsName("hurt") &&
'baseAnim.GetCurrentAnimatorStateInfo(@).IsName("getup");

You’re adding the "getup" animation to the robot’s walk state. The Walker will prevent
walking when the robot is getting up.

Save Enemy.cs and open Robot.cs. You're here to disable the AI when the enemy is
knocked down.

Add the following override to the class:

protected override IEnumerator KnockdownRoutine() {
isKnockedOut = true;
baseAnim.SetTrigger ("Knockdown");
ai.enabled = false;

yield return new WaitForSeconds (2.0f);
baseAnim.SetTrigger ("GetUp");
ai.enabled = true;

knockdownRoutine = null;

¥

This overrides the KnockdownRoutine of the Actor class so that you can enable different
behavior for the robot knockdown. First, you disable the Al and play the knockdown
animation when the knockdown routine starts. Then you keep the robot down a little
longer than the hero and trigger the get-up animation and Al.

K

Save Robot.cs, return to Unity and click Play. Try jumping just before a robot punches
to trigger a knockdown. Note how you’re unable to move while you’re on the ground.

Congratulations Pompadoured Hero, your game has "learned" the jump attack! You have
the knockdown working: The hero falls to the ground and seems to black out
momentarily when he takes a vicious hit in the air.

Next up, another special attack for the protaganist: Run Attack!

Run...attack!

One special attack is hardly enough to keep a player’s interest, so you’ll introduce a run
attack. While running, the hero will lunge, kick, and knock down the enemy —
channeling his inner kickboxer.

Import Hero Run Attack.unitypackage from the Unity Packages folder.

® 0 Import Unity Package

Hero Run Attack

v [&5 Animation
v @ a Hero
(¥ > hero_run_attack_anim.anim { NEW |
v [&5images
v [3 sprites

v [G Hero
[|l hero_runattack_00.png (NEW |
[/ |l hero_runattack_01.png (NEW |
(¥ |l hero_runattack_02.png (NEW |
(¥ |l hero_runattack_03.png (NEW |
[/ |l hero_runattack_04.png [NEW |
(¥ |l hero_runattack_05.png (NEW]
All None Cancel || Import

Add an animation state to the hero’s animator: double-click hero_anim_controller to
open the Animator window. Drag hero_run_attack_anim into the grid layout.
Rename this new state to run_attack.

#8 Animator
[I.Ayers || Parameters | Auto Live Link

= IsRunning
IsGrounded
Jump o
= EvaluatedChain IC]
= CurrentChain D

4

O

o

O

(]
(]

= IsAlive
= IsHurt
= Knockdown

= GetUp

3 Project
| Create '|
v 7 Favorites
©\ All Materials
©) All Models
(©L All prefabs
© All scripts

Vi Assets

v &3 Animation
== Hero
&5 Robots

& Images
Background
MainMenu

¥ Sprites

ﬁ Hero

Add a transition from run to run_attack. Uncheck Has Exit Time and Fixed Duration.
Set Transition Duration to 0.

Add two conditions: CurrentChain being Greater than @ and EvaluatedChain Less
than 1.

Your new run_attack state will occur when the player presses attack while the hero is
running.

Auto Live Link

© Inspector
WSS run -> run_attack e
&&= 1 AnimatorTransitionBase

» Hero

htroller
nim
im

Transitions Solo Mute
- #,

= run -> run_attack

IHas Exit Time I

¥ Settings
Exit Time 0.625
Fixed Duration LJ
Transition Duration (%) 0
ransition Offset 0
Interruption Source | None

Ordered Interruption

Conditions

= |CurrentChain [] [Greater o

= [EvaluatedChain [+] [Less +) 1

'I
]
+ —

Add a transition from idle to run_attack. Set parameters the same as the prior
transition, but with the addition of a third condition of IsRunning set to true.

This transition will play when the player immediately presses attack when the run

animation hasn’t started.

Base Layer Auto Live Link = dle -> run_attack o,

Conditions
= [CurrentChain [~] (Greater _¢] [0
= [EvaluatedChain [+] [Less i) [
= i [=] [true |
Animation/Hero/hero_anim_controller.controller [+ -

© Inspector

W= 1 AnimatorTransitionBase

Transitions Solo Mute
- #.

== jdle -> run_attack

IHas Exit Time - I

¥ Settings

i 05
Fixed Duration [|
Transition Duratior 0

Transition Offset 0
Interruption Source None D

Ordered Interrupticy/!

Lastly, add a transition from run_attack to jump_land. Keep Has Exit Time checked
and set Exit Time to 1. Uncheck Fixed Duration and set Transition Duration to 0.

When the run_attack finishes the jump_land state will play.

& = © Inspector I Flem
“ run_attack -> jump_land o,
&= 1 AnimatorTransitionBase

Transitions Solo Mute
— [ﬁ L,
W run_attack -> jump_land

| Has Exit Time |

7 Settings
Exit Time [1
Fixed Duration]
Transition Duration (0

Transition Offset 0
Interruption Source | None n
Ordered Interruption|v/

Save the scene and the project. Time to add the logic to implement the animations!
Open Hero.cs and add the following variables:

public AttackData runAttack;
public float runAttackForce = 1.8f;

runAttack stores the attack values for the hero’s run attack. runAttackForce dictates
how far the hero lunges forward when performing a run attack. You’ve made it a public
variable so you can easily adjust it in the Inspector.

In the Update method, append the following to isAttackingAnim:

| | baseAnim.GetCurrentAnimatorStateInfo(@).IsName("run_attack")
Now the new run_attack state is considered an attack state.
In the Attack method, replace the else condition with:

else {
if (isRunning) {
//1
body.AddForce((Vector3.up + (frontVector x 5)) x runAttackForce,
ForceMode.Impulse);
//2
currentAttackChain = 1;
evaluatedAttackChain = 0;
baseAnim.SetInteger("CurrentChain", currentAttackChain);
baseAnim.SetInteger("EvaluatedChain", evaluatedAttackChain);
} else {
//3
currentAttackChain = 1;

evaluatedAttackChain = 0;
baseAnim.SetInteger ("EvaluatedChain", evaluatedAttackChain);
baseAnim.SetInteger ("CurrentChain", currentAttackChain);

}

Here you make it so that when the hero is running, he performs a run attack. Otherwise,
he performs a regular punch.

1. Lunges the hero forward thanks to a bit of upward and forward force, multiplied by
runAttackForce, on his rigidbody. The second parameter, ForceMode. Impulse,
applies the force instantly and compensates for the Rigidbody’s mass.

2. Triggers the attack, which is like a regular punch, by assigning CurrentChain to 1
and EvaluatedChain to 0.

3. Triggers the regular punch if isRunning is false.

Find the HitActor method, and add this else if condition before the last closing
bracket:

else if (baseAnim.GetCurrentAnimatorStateInfo(®).IsName("run_attack")) {
AnalyzeSpecialAttack (runAttack, actor, hitPoint, hitVector);
Here you process the run_attack and associated damage.

Save the script and return to Unity. Select MyHero and set the values of the Run
Attack variable: Attack Damage to 10, Force to 120, Knockdown to true and Run
Attack Force to 1.8 in the Hero component.

¥ Run Attack
Attack Damage 20 |
Force 1120 |
Knockdown 4
Run Attack Force 1.8 |

Run the game. While running, press attack to perform a spinning kick — let the bodies
hit the floor!

o
/'
o

A

V
/s
A

Awesome! You’ve taught the hero two special attacks and given the player some variety
to work with. Don’t stop now!

Note: Actually, if you do need to step away to important stuff like stretch, answer
some pesky email or get your blood pumping by doing 100 jumping jacks, you’re in
a perfect spot to do so.

1-2-3 combo

Up until now, you’ve been jabbing away at robots to defeat them. It takes like 10
punches to take down a droid. My thumb hurts just thinking about it!

To add some variety and strength to the hero’s attacks, you’re going to teach him to do
a timed three-punch combo — a chain of punches!

The logic will work like this:

attacked again at 0.2 seconds

attacked at 0.35 seconds
(missed the chain)

If the first attack connects with an enemy, there will be a 0.3-second time window in
which to chain the attack. If the player triggers the second attack before 0.3 seconds
elapses, then the hero will perform the next attack in the chain. If the second attack
occurs after 0.3 seconds, however, then the hero will merely do the first attack in the

chain again.

Similar logic applies to the third attack: if the player triggers it within the 0.3-second
limit, the hero will execute the final, more powerful punch.

K

Open Hero.cs and add the following variables:

//1
public AttackData normalAttack?2;
public AttackData normalAttack3;

//2

float chainComboTimer;

public float chainComboLimit = @.3f;
const int maxCombo = 3;

1. The first two variables store the AttackData for the other two attacks, with
normalAttack2 being the AttackData for the second punch and normalAttack3 being
used for the third, more powerful punch.

2. These variables store values for the combo-chaining logic. chainComboLimit stores
the timeframe where the player can trigger the next combo attack, maxCombo
specifies the maximum number of possible attacks, and chainComboTimer stores the
actual amount of time remaining in the combo chain.

In the Update method, replace isAttackingAnim with:

isAttackingAnim =
baseAnim.GetCurrentAnimatorStateInfo(@).IsName("attackl") ||
baseAnim.GetCurrentAnimatorStateInfo(@).IsName("attack2") ||
baseAnim.GetCurrentAnimatorStateInfo(@).IsName("attack3") ||
baseAnim.GetCurrentAnimatorStateInfo(@).IsName("run_attack") ||
baseAnim.GetCurrentAnimatorStateInfo(@).IsName("jump_attack");

The isAttackingAnim flag now contains all attack states that the Hero can do, including
"attack2" and "attack3".

Still in Update, after the block of code wrapped in if (!isAttackingAnim), add the
following:

//1

if (chainComboTimer > @) {
chainComboTimer —= Time.deltaTime;
//2

if (chainComboTimer < 0) {
chainComboTimer = 0;
currentAttackChain = 0;
evaluatedAttackChain = 0;
baseAnim.SetInteger ("CurrentChain", currentAttackChain);
baseAnim.SetInteger ("EvaluatedChain", evaluatedAttackChain);

The game will run this before the Attack() method in the Update loop.

1. Checks if the hero is performing a chainAttack by checking if chainComboTimer is
greater than 0. If true, it reduces chainComboTimer by deltaTime.

2. Checks if the chainComboTimer expired, then resets the chainComboTimer, as well as
the variables currentAttackChain and evaluatedAttackChain, then it resets the
animator.

Next, wrap all the lines of code inside the Attack method with this if:

if (currentAttackChain <= maxCombo) {
<Code goes here>

Here you curb the hero’s ability to make combo attacks. He can’t exceed maxCombo,
which currently limits him to a three-punch combo.

Still in Attack, find these lines inside the else condition of the if(isRunning) block:

currentAttackChain = 1;

evaluatedAttackChain Q;

Replace with:

if (currentAttackChain == @ || chainComboTimer == 0) {
currentAttackChain = 1;
evaluatedAttackChain = 0;

b

Here you reset values for currentAttackChain and evaluatedAttackChain after the
chainComboTimer resets.

Still in Hero.cs, add this method:

private void AnalyzeNormalAttack(AttackData attackData, int attackChain,
Actor actor, Vector3 hitPoint, Vector3 hitVector) {
actor.EvaluateAttackData(attackData, hitVector, hitPoint);
currentAttackChain = attackChain;
chainComboTimer = chainCombolLimit;

s

The main difference between the above method and AnalyzeSpecialAttack is that you
handle chaining by setting currentAttackChain to attackChain. You then call
EvaluateAttackData on the victim — I mean actor — that received the attack, and
finally, you reset chainComboTimer.

K

Add this line to the end of the AnalyzeSpecialAttack method:

chainComboTimer = chainCombolLimit;

You’re now updating the chain timer when there is a special attack.
In the HitActor method, replace this:

if (baseAnim.GetCurrentAnimatorStateInfo(0).IsName("attackl")){
base.HitActor(actor, hitPoint, hitVector);

}
With this beauty:

if (baseAnim.GetCurrentAnimatorStateInfo(@).IsName("attackl")) {
AnalyzeNormalAttack (normalAttack, 2, actor, hitPoint, hitVector);

} else if (baseAnim.GetCurrentAnimatorStateInfo(@).IsName("attack2")) {
AnalyzeNormalAttack (normalAttack2, 3, actor, hitPoint, hitVector);

} else if (baseAnim.GetCurrentAnimatorStateInfo(@).IsName("attack3")) {
AnalyzeNormalAttack (normalAttack3, 1, actor, hitPoint, hitVector);

Which AttackData to use will depend on the state of animation. With this
enhancement, HitActor now accepts the two (soon to be added) punch combo
animations, attack2, and attack3 as potential attacks.

Replace the contents of DidChain with:

evaluatedAttackChain = chain;
baseAnim.SetInteger("EvaluatedChain", evaluatedAttackChain);

Here you assign evaluatedAttackChain as chain when an attack animation performs.

Save the script and return to Unity to finish off this feature by adding animations for
the hero!

Import Hero Attack Combo.unitypackage from the "Unity Packages" folder. Find the
two remaining clips for the hero combo inside.

[JON Import Unity Package
Hero Attack Combo
v [&5 Animation
v [G Hero
¥ > hero_attack?_anim.anim [NEW |
¥ > hero_attack3_anim.anim [NEW |
v [&iimages
v &3 Sprites
v [G Hero
¥/ i hero_attack_01_00.png [NEW |
(¥ i hero_attack_01_01.png (NEW |
(¥ i hero_attack_01_02.png (NEW |
(¥ s hero_attack_02_00.png (NEW |
(¥ i hero_attack_02_01.png (NEW |
(¥ i hero_attack_02_02.png (NEW |
¥/ i hero_attack_02_03.png (New |
[|l hero_attack_02_04.png [NEW |
Import

Open the Animator by double-clicking hero_anim_controller in the Assets/
Animation/Hero folder. Double-click the attack sub-state machine.

Drag hero_attack2_anim clip into the grid layout and name the new state attack2.
Repeat for here_attack3_anim clip, but name it attack3.

22 Animator % Navigatior
| ayers || Parameters | ® Baselayer attack Auto Live Link
‘QrName

IsRunning
IsGrounded
Jump

[

EvaluatedChain
= CurrentChain
= IsAlive
= IsHurt

= Knockdown

OOOQjﬂODD

= GetUp

O Consol @ Project
| Create |
(OLAll Models |4 Assets » Animation » Hero

O\ All prefabs £ hero_anim_controller
©L All scripts

V& Assets
¥&al Animation

id hero_getup_anim
4 hero_hurt_anim

&5 Robots d hero_idle_anim
vﬁ“ d hero_jump_attack
Background d hero_jump_fall
MainMenu 4 hero_jump_land
Vﬁrkes 4 hero_jump_rise
Hero id hero_knockout_anim
&5 Misc d hero_run_anim
&5 Robot d hero_run_attack_anim
&5 LevelData d hero_walk_anim
G Prefabs
» Gl Scenes
» &l Scripts | Ormmm—
—_—

Add a transition from attack2 to Exit. Keep Has Exit Time checked and set Exit Time
to 1. Uncheck Fixed Duration and set Transition duration to 0.

Add a transition from attack3 to the Exit state and use the same settings.

These transitions return the state machine to idle when the new attack states finish
their animations.

© Inspector
& attack3 -> Exit o %
W= 1 AnimatorTransitionBase

Auto Live Link

Transitions Solo Mute

™ | @ =

W= attack3 -> Exit

Has Exit Time "4
¥ Settings
Exit Time 1
Fixed Duration []
Transition Duratior 0
Transition Of?set 0
Interruption Sourcc
Ordered Interruptic/y/

States >

StateMachine = attack?2

s

Select the transition arrow from idle to attack. Select the idle -> attack2 transition,
and uncheck Has Exit Time and Fixed Duration. Set Transition Duration to 0.

Finish by adding these two conditions: CurrentChain as Greater than 1 and
EvaluatedChain as Less than 2.

Voila — your transition to the second punch in the combo.

© Inspector
Auto Live Link - dle -> attack2 o %

s 2 Transitions

Transitions Solo Mute

® @ #

W= jdle -> attack2

I Has Exit Time] I

¥ Settings
Exit Time 0.5
Fixed Duration O
Transition Duration 0
Transition Offset 0
Interruption Source [None
Ordered Interruptioilv/

Conditions

— |CurrentChain ~| [Greater) I‘

— [EvaluatedChain [+] [Less i) [2 |‘
e

Create another transition from idle to the attack sub-state and select States / attack3.
Select the transition and pick the idle -> attack3 transition.

Set the same as you did for the idle -> attack2 transition, but make CurrentChain
Greater than 2 and EvaluatedChain Less than 3.

Auto Live Link ||| & jdle -> attack3 3

W= 3 Transitions

Transitions Solo Mute

idle -> attack2 [™]
idle -> attackl ™|

-
== idle -> attack3

Has Exit Time -
¥ Settings

Exit Tii 0.5
Fixed Duration -
Transition Duration 0
Transition Offset |0

Interruption Source | None
Ordered Interruptiolls

Conditions
= |CurrentChain | | Greater 42
= [valuatedChain 2 r—— |
S

Huzzah! Animations wired. Over to the Inspector with you to stitch it all together.

K

In the Hero component of MyHero, set the Normal Attack 2 variable with Attack
Damage set to 10, Force set to 30, and Knockdown set to false.

For Normal Attack 3, set Attack Damage to 20, Force to 120, and check Knockdown
to make it true.

¥ Normal Attack 2
Attack Damage 10 |
Force 1120 |
Knockdown O

¥ Normal Attack 3
Attack Damage 20 |
Force 1120 |
Knockdown ¥4

Save the scene and click Play.

How’s that three-punch combo working? Press the attack button repeatedly to trigger
it. Each punch is more bruising than the last and the sequence ends with the enemy on
the floor.

It's about to get sparky in here

You’re almost done adding features in this chapter. When an actor successfully punches
another actor, there should be a visual effect — a spark! Your next few steps will result
in this classic beat-em-up effect, and you’ll be pleased to see I’ve made it very easy to
integrate.

Import HitEffect.unitypackage from the Unity Packages folder.

® 0 Import Unity Package
HitEffect
v [55 Animation
& % hit_anim.anim i)
4 D hit_controller.controller —
v/ &3l Images
v/ =] Sprites
v M & misc
¥ i hiteffect_00.png [NEW |
i hiteffect_01.png [NEW
v i hiteffect_02.png iy
v i hiteffect_03.png Ly
v i hiteffect_04.png [FEW)
(¥ i hiteffect_05.png [
v [5 prefabs
¥ ¢ HitParticle.prefab [
v M Gascripts
o DestroyOnComplete.cs (FEW]
Import

Here’s what you’re about to set up: When one actor hits another, or misses and
connects with an object instead, the game will create the hit effect then destroy it when
the animation finishes.

Find the prefab named HitParticle.

Beat ’Em Up Game Starter Kit Chapter 8: Power Attacks

© Inspector
™ [HitParticle | [static ¥
Tag|Untagged #|layer(Default]

I,
X [
© Sprites-Default

Sprites-Default
Shader | Sprites/Default

For convenience, it contains a SpriteRenderer to display the hit effect, an animator to
handle the animation, and a DestroyOnComplete script:

public class DestroyOnComplete : MonoBehaviour {

public void DidComplete() {
Destroy(gameObject);

b

When something calls DidComplete(), the gameObject will destroy itself. The method is
called as an Animation Event in the particle’s animation clip.

h raywenderlich.com 334

All you need to do is instantiate this at the right time. Open Actor.cs and add this
variable:

public GameObject hitSparkPrefab;
Now the hitSparkPrefab variable contains the prefab for the hit effect.
Next, add the following method:

protected void ShowHitEffects(float value, Vector3 position) {
GameObject sparkObj = Instantiate(hitSparkPrefab);
sparkObj.transform.position = position;

ShowHitEffects takes the amount of damage and the position of the collision then
creates an instance of the HitParticle prefab at the precise position of the hit. You’ll
make use of the value parameter in the next chapter.

Find EvaluateAttackData and insert the following at the end of the method:
ShowHitEffects(data.attackDamage, hitPoint);
Here you call ShowHitEffects to create the hit effect.

Save the script and return to Unity to set the prefab references for the HitParticle.
Select MyHero in the Hierarchy and assign HitParticle as the Hit Spark Prefab
variable.

v « [¥ Hero (Script) @ =
Script Hero (o]
Base Anim $% HeroAnimator (Animator) ©
Body A MyHero (Rigidbody) ©
Shadow Sprite -.ShadowCharacter (Sprite Renderer. ©
Speed 2
Is Grounded J
Base Sprite - HeroSprite (Sprite Renderer) [0}
Is Alive 4
Max Life 100
Current Life 100

» Normal Attack
Is Knocked Out J

I Hit Spark Prefab [/ HitParticle | OI

Then, select the EnemyRobot prefab in the Assets / Prefab folder. Also, set Hit Spark
Prefab as the HitParticle prefab.

v = ¥ Robot (Script) o
Script Robot ©
Base Anim |$2 RobotAnimator (Animator) | o
Body [EnemyRobot (Rigidbody) o
Shadow Sprite | *. ShadowCharacter (Sprite Renderer| ©
Speed 2]
Is Grounded -

Base Sprite | '~ EnemyBody (Sprite Renderer)] (o]
Is Alive ¥4

Max Life 100

Current Life 100

» Normal Attack
Is Knocked Out O
Hit Spark Prefab ¢ HitParticle
Y= = T =

Save the scene and play. Many spark. Such wow! Players will love the instant
gratification of a spark when they destroy some poor droid.

N o

| get knocked down!

You’ve hung in there for a lot of drudge work in this chapter — you had to know it was
coming! Worth it though, right? You’re probably seeing the light at the end of the
tunnel with this game, and you’re about to add the last feature for this chapter.

Conditions exist that allow the hero to get mauled to death by a mob of sentient scrap
metal. It’s an embarrassing situation for him, honestly — the stuff of nightmares!

- \,\\‘ -
A

Unfortunately, if the hero takes continuous hits, he can’t escape because the hurt
animation requires him to be frozen with attacks disabled. Your game also allows him
to take hits during this animation, but there is no reason to change that logic.

To increase the hero’s chances of surviving multiple attackers, you will make him a
little weaker and a tad faster to hit the ground. Quite the contradiction, huh?

Remember that when he is down, our pompadoured protaganist is immune from
damage. If it takes fewer hits to trigger a knockdown, then the hero can escape the mob
sooner.

Open Hero.cs and add the following variables:

public float hurtTolerance;
public float hurtLimit = 20;
public float recoveryRate = 5;

These variables store how much of a beating the hero can take before getting knocked
down.

* hurtTolerance stores the amount of damage the hero can take before collapsing.
You’ll set it dynamically shortly.

e hurtLimit stores the maximum value for hurtTolerance.

» recoveryRate is the amount by which hurtTolerance will be increased per second
until it reaches the hurtLimit value.

Find Update and insert the following at the end of the method:

if (hurtTolerance < hurtLimit) {
hurtTolerance += Time.deltaTime * recoveryRate;
hurtTolerance = Mathf.Clamp(hurtTolerance, 0, hurtLimit);
}

This statement calculates the hurtTolerance value per second. If hurtTolerance is less
than the maximum hurtLimit, it increases by the time difference since the last update,
expressed as Time.deltaTime, multiplied by the recoveryRate. This value is then
clamped between @ and the hurtLimit.

In TakeDamage, replace the following lines:

if ('isGrounded) {
knockdown = true;

}

With these lines:

hurtTolerance —= value;

if (hurtTolerance <= @ || 'isGrounded) {
hurtTolerance = hurtLimit;
knockdown = true;

Here you subtract from hurtTolerance the damage taken by the hero. If hurtTolerance
is less than 0, or the hero is airborne, it triggers a knockdown and resets hurtTolerance.

Save the script and play the game! Since the default values of the variables are set, you
don’t need to modify the Hero component.

Play the game, charge a group of robots and let them take you down. Since you cannot
take damage while slithering around, you can take a moment to collect yourself and
revise your strategy.

Where to go from here?

You should be feeling spectacular about now. Your hours of toil on PompaDroid are
starting to pay off! You started with a rough game and now have something to be proud
of. It only gets better from here. And ponder for a moment all that you’ve learned about
Unity. At this point, you’ve explored most of the engine and might even find yourself
predicting the next steps before you read them.

In this chapter, you’ve:
e (Created a brand new AttackData class.

» Enabled knockdowns for all, but also made sure they can get up again, because you’re
a generous maker like that.

K

* Cleaned up your code and fixed major bugs.

e Added three combination attacks to make the hero badass.

» Made sparks fly
» Created a way for the hero to escape an angry mob of metal.

What else does it need? Definitely a soundtrack — you’ll get to that later. It also needs a
better interface and to be playable on a mobile device. Turn the page to start working

on the heads-up display and mobile UI!

Chapter 9: Heads-up

Display and Mobile Ul

Pompadroid feels like a proper game now. Unless you try to play it on a mobile device. I
bet you’d like to see your health and how close those droids are to death.

In this chapter, you’ll build a heads-up display (HUD) so players know how badly
they’ve hurt an enemy, everybody’s health levels, and when the battle is over.

You’ll get very familiar with Unity’s Ul system as you add the following features to the
game:

» Health bar for the hero and foes
» GO sign to indicate when the hero should proceed
« Damage display

* On-screen attack, jump and movement buttons for mobile devices

Creating the Ul

The Ul displays game information such as the hero’s health. Two popular designs are
simple number values and progress bars.

h raywenderlich.com 340

Health: 1&

pA

A" T-Q
*

In the case of PompaDroid, health will show as a simple number on the left and a
progress bar on the right. Both ultimately show the same data, but I’ve found that
players tend to prefer a progress bar to an on-screen number. You should know how to
implement both.

Information is vital in a game as it guides the player’s decisions. For example, players
tend to be more cautious when health is low.

Unity’s user interface 101

Unity’s old Ul system caused many a developer to have a furrowed brow. You either had
to use third-party solutions or resign yourself to hours of coding. When Unity 4.6 came
along, developing Ul became much easier.

The base of the Unity’s UI system is the Canvas. A canvas is a GameObject that has a
canvas component attached. All Unity Ul elements must be attached to a canvas object
in order to render.

Unity depicts a canvas as rectangle-shaped space in the scene. In the image below, it’s
the red rectangle and children UI elements are the yellow rectangles.

Main Camera
Hero Sprite Ul Element

A Text Ul Element
EventSystem

A Text Ul Element

Though a canvas is just another component, there are special rules for rendering its
content.

First, the order in which it draws elements depends on their order in the Hierarchy.
When two sprites overlap on the same canvas, Unity draws the first child of a Ul
element first.

Canvas Canvas
1 Robot Sprite Ul Element 1 Hero Sprite Ul Element
2 Hero Sprite Ul Element 2 Robot Sprite Ul Element

‘ i

A canvas shows its elements via various Render Modes:

» Screen Space: Overlay renders the canvas on top of the scene. This mode resizes the
canvas when the size of the screen changes.

» Screen Space: Camera draws the canvas in front of the camera while taking in its
camera settings. It’s useful for interfaces that should appear in front of the camera.
This mode resizes the canvas when the camera’s frustum size changes.

K

» World Space: behaves like any other object in a scene, so it can do things like hide
behind objects and walls. This is useful when displaying UI elements that are part of
the game, such as speech bubbles and damage displays.

A canvas, and all of its children, are done in a single draw, so a canvas renders atop
other canvases based on their sort order or — if applicable — their distances from the
camera.

R DI EIE | ©inspector | Fly
|Red Canvas [_Istatic v
Tag | Untagged 4| Layer[|
>§€ Rect Transform I
v|[] ¥ canvas o
Render Mode [Screen Space - Overlay |
Pixel Perfect 0
| Sort Order [1 |
Red Game: Target Display [Display 1 t)
Prgss Play To —
Continue © Inspector & =]
|Blue Canvas [JStatic v
Tag | Untagged 4| Layer| ul al
» 55 Rect Transform
v | canvas
Render Mode | Screen Space - Overlay ™
Pixel Perfect]

[Sertorder 0

Target Display [Display 1

3j[3)
5L
3

Unity Ul also has a special Transform called a RectTransform. Unlike a regular
Transform, which tracks a point in space, a RectTransform tracks a rectangular space in
a 3D world.

Similar to regular Transforms, they calculate based on position, rotation and scale. They
also contain width and height values.

¥ . Rect Transform @ 3 =
center Pos X Pos Y Pos Z
p 0 0 0 !
3| HH Width Feight
: 100 [100 |
¥ Anchors
Min X 0.5 Y 0.5
Max X 0.5 Y 0.5
Pivot X 0.5 'Y 05 |
Rotation X 0 'Y 0 'Z0 |
Scale X|1 |¥ |1 [Z |1]

The RectTransform is visible in the scene when you use the Rect tool located in the
upper-left part of the toolbar.

O ¢ S =iols)

A rectangle dotted by blue circles depicts a RectTransform. You position the rectangle
in your game world by employing the concept of Anchoring.

Anchors — indicated by small triangles — are positioned by percentages on the parent
rectangle. Below, you can see anchors (circled in red) set as percentages of their
parent’s rectangle (the yellow square).

The minimum and maximum anchors are the bottom-left and the top-right

percentages, respectively. The example below shows minimum (2.3, 0) and maximum
(1, 0.74).

v55 Rect Transform o,
custom Top Pos Z
@ |-26 Il |
tto
1]]
Mi £ Y 0
Max Anchor | Max v
(1,0.74) Pivot ! Y05
Rotation Yo 'zo |
Scale ¥ [1

'zl l

Min Anchor
(0.30, 0)

70%

Anchors pair with corresponding corners of the rectangles. The anchor and its

corresponding corner enforces a fixed distance between them, depicted by the yellow
lines in the following image.

Anchors permit Ul to dynamically resize the rectangle based on the size of the parent
rectangle.

In the image above, the anchors are positioned at the bottom edge of their parent. If
you made the parent wider (left) or taller (right) it would look like the following image.

The button is fixed to the bottom of the parent rectangle because the anchors are along
the bottom edge of the parent rectangle. Widening the parent rectangle increases the
button’s width. However, making the rectangle taller did not affect its size.

On the other hand, if you set up the anchors like this:

The anchors would be positioned at the corners of their parent rectangle. Resizing the
parent would yield the following results:

Widening works the same as before, but this time, when you make the parent taller the
button also becomes taller.

To simplify your work, Unity provides Anchor Presets, or common values for
RectTransform’s anchors.

Click the icon named Anchor Presets on the left to access these:

v55 Rect Transform @ =t %
center Pos X Pos Y Pos Z
<[556 o o |
3| Width Height
: 2252 856 |
¥ | Anchor Presets
Shift: Also set pivot Alt: Also set position :
left center right stretch ,‘___I
Irs |
-
HiHENE = —
| A re—
: 10| O]t O] (8]
0| e e
c :
ERERIRERE
o o @ (@ =

Experiment with these presets until you get a good grasp of how they work and what
they do for your game.

Unity’s Ul uses an Image component instead of a SpriteRenderer to render sprites. Be
careful, it’s easy to accidentally add a SpriteRenderer to a canvas and not get the
behavior you were expecting!

K

Now that you have a general idea of how the Ul works, it’s time to create one for
Pompadroid!

Implementing health bars

You’ll create a health bar with a portrait of the protagonist to show enemies’ health.

y ‘ P

The health bar’s behavior is simple. When health falls below a certain threshold, the bar
changes color. It’ll be green when full, yellow when about half full, and red when the
character is a few hits away from certain death.

y‘/ HEALTH y ‘ HEALTH y ‘ HEALTH

Health bar for the hero

Import the HeroHUDSprites.unitypackage located in the Unity Packages folder,
which contains the sprites for the health bar.

Q [] Import Unity Package

HeroHUDSprites

v &3l Images
v &5 GameHUD

@ui_hp_back.png | NEW |
@ui_hp_bar.png { NEW |
| ui_hp_green_fill.png (NEW |
Li_]ui_hp_hero_thumb.png { NEW |
i ui_hp_red_fill.png {NEW|
i ui_hp_yellow_fill.png {NEW|

Open the Game scene and create a UI \ Canvas in the Hierarchy. Rename it UICanvas.
You’ll attach all life bar UI components to this canvas root. It will also create an
EventSystem GameObject to handle all events for the U, such as button presses.

= Hierarchy I
‘ Create ’1 (oAl
v Q Game*
» MyHero
¥ MyGameManager
MainCamera
LeftCamBounds
RightCamBounds
SpawnRow0
SpawnRowl
SpawnRow2
SpawnRow3
SpawnRow4
IntroStartMarker
IntroEndMarker
ExitMarker
UlCanvas

Select UICanvas, set Render Mode to Screen Space - Camera and set Camera to
MyGameManager’s child, MainCamera.

Set Plane Distance to 1 and Order In Layer to 10. Now this canvas will render in front
of MainCamera.

In the Canvas Scaler, set UI Scale Mode to Scale With Screen Size, Reference
Resolution to (X:1200, Y:800), Screen Match Mode to Shrink, and Reference Pixels
Per Unit to 32.

© Inspector | Flram
¥ UlCanvas | [Static ¥
Tag | Untagged +| Layer| Ul ™
» 55 Rect Transform @ = %
v/ ||¥ canvas o %,
Render Mode | Screen Space - Camera A |
Pixel Perfect J
Render Camera % MainCamera (Camera) | 9
Plane Distance 1
Sorting Layer Default
IOrder in Layer 10
Additional Shader Channels | Nothing &
o E 3o
Ul Scale Mode [Scale With Screen Size N
Reference Resolution X 1200 'Y 800 |
Screen Match Mode | Shrink
Reference Pixels Per Unit (32
v & (¥ Graphic Raycaster (Script) @ = %
Script & GraphicRaycaster [0}
Ignore Reversed Graphics
Blocking Objects [None +]
Blocking Mask | Everything ™

These settings will scale the Ul to a size of 1200 units wide by 800 units tall. By default,
it’ll shrink to fit the device. It’ll also use 32 pixels per unit (ppu) — a sprite that renders
at 32 ppu means that one pixel equals one unit.

Create a child of UICanvas by right-clicking it and selecting Create Empty. Rename
this child HeroLifeBar.

= Hierarchy] o =
Create 'I (arall D)
v Q Game* =
> MyHero

b MyGameManager

HerolLifeBar

EventSystem

You’ve just created a GameObject with a RectTransform instead of a plain Transform
that will serve as the parent of the hero’s life bar.

Set the Anchor Preset to Top Left, set Pivot to (X:0, Y:1),Pos X, Pos Y and Pos Z to
0, Width to 505 and Height to 200 on the RectTransform on the HeroLifeBar.

%8 Animator © Animation # Scene - 0 = | © Inspector] & =
ot & 'HeroLifeBar | [static «
Tag | Untagged + | Layer| Ul $

v55 Rect Transform i
left Pos X Pos Y Pos Z

0 0 0
g |] || |[width Height
|s505 |[200 | HESE

1
1

S|

0 Z 0
1 Z|[1

[Add Component]

¥ Anchors
Min
Max

I Pivot

ollo|o

Rotation
I Scale

o

XX | X |IxX X

<|=< |=<|< =<

You’ve just pinned the RectTransform to the top-left side of the UlCanvas. It should
show as a white box with blue corners when you select it with the Rect Tool.

Right-click HeroLifeBar, and select UIN\Image to create an Image child of HeroLifeBar
that will serve as the background of the life bar.

Rename it HeroHPBack, and then set the ui_hp_back sprite as its Source Image.

K

Position the sprite inside its parent HeroLifeBar’s rectangle by setting the Anchor
Preset to Bottom Left, Pos X, Pos Y and Pos Z to (X:330, Y:103, Z:0),the Width
348, and finally, Height to 57.

to

= Hierarchy

2 Navigation = [© Inspector l & -

Create ~| (arall) - E-3 - \c.m.osv‘ oAl

& ¥ HeroHPBack [IStatic

v? :;Va:e' = Tag [Untagged ¢ Layer[ul 4
ero > ar =
» MyGameManager v Rect Transform ﬁ 3 £,
left Pos X Pos Y Pos Z

¥ UlCanvas
¥ HerolLifeBar 330 Il 10? 0
Width Height

HeroHPBack

ol

348 [57 | [&i]R

Preserve Aspect ||

EventSystem
¥ Anchors
Min x 0 y[0 |
Max X0 Y0 |
Pivot X 05 Y 05 \
Rotation X [0 ly[o 1z[o
Scale x[1 [v[x |z [x
@ Canvas Renderer o
= &
I Source Image [Elui_hp_back oi
Color 2
Material None (Material) o}
Raycast Target 4

Image Type
Set Native Size

NOTE: When creating a new Image, remember that if you don’t assign a sprite to
it, you’ll see it render as a white image on the screen.

Add another Image child to HeroLifeBar and rename it HeroHPBar. This will serve
the background for the hero’s thumbnail. Make sure this is the second child of
HeroLifeBar because this must render on top of HeroHPBack.

as

Set its Source Image as ui_hp_bar, the Anchor Preset to Bottom Left, and Pos X, Pos

Y and Pos Z to (X:250, Y:76, Z:0).Set the Width to 500 and Height to 152.

= Hierarchy & -= %8 Animator © Animation # Scene 2 Navigation v= | ©inspector | .=
| Cosun s (SoAT _ % | Q) | & - || Gizmos = | (oAl L ¥ [HeroHPBar [static v
v < Game* = Tag | Untagged 4| Layer| u 3]
: m:::eManager Rect M
¥ UlCanvas left Pos X Pos Y Pos Z
- | 250 76 0
v Hngr Kk AL & @ Width Height
Soo 2| (R]
EventSystem ¥ Anchors
Min X0 YO
Max X0 'vo
Pivot xo5 |v[os |
Rotation X 0 YO zZo
Scale X1 Y(1 Z(1
(@ Canvas Renderer -8
. -
e T
Color [1Zx
Material W o}
Raycast Target
Image Type
Preserve Aspect | |
[SetNatveSize |

Looking good. The Ul is coming along nicely!

Add an Image child to HeroHPBar, which will become the hero’s life bar. Rename it
HeroHPFill. Set its Source Image as ui_hp_green_fill. In its RectTransform, set
Anchor Preset To Top Right, Pos X, Pos Y and Pos Z to (X:-173, Y:-43.5, Z:0),
Width to 344 and Height to 48.

= Hierarchy .= o= © Inspector | a .=
| Create 7| (ol)) & [HeroHPFil [Jstatic v
v?;::e’ = Tag | Untagged +| Layer| ul 4]
lero Yo T
» MyGameManager 'dvrg tReﬂ Trasnsform - os. SR
¥ UlCanvas
¥ HeroLifeBar @ V-VIljjn H;‘B:t 10
HeroHPBack eig
¥ HeroHPBa 344 | 48 LR
HeroHPFill v And.wrs
EventSystem Min X1 Y1 |

Max X1 Y1 |
Pivot x 0.5 yos |

Rotation X 0 'ylo z70
Scale X1 l¥[1 |z[1
© canvas Renderer @ = |

v i
Source Image [lui_hp_green_fill

Color Vi

Material None (Material) (]
Raycast Target v
image Type
Preserve Aspect ||

| setNatvesize |

l Add Component I

In the Image component of HeroHPFill, set the Image Type to Filled and Fill Method
to Horizontal.

Try changing the Fill Amount variable to see the hero’s life bar behave like a progress
bar — a value of 9.0 appears empty and 1.0 appears full.

NOTE: Remember to revert to its initial value of 1. 0.

7 Scene B Navigation

[78 Animator) Animation

=1 © Inspector | = =
>||2D 29)

4 ¥ [HeroHPFill [static «

Tag | Untagged 4| Layer| Ul 4]
» 5 Rect Transform @ = %
@ Canvas Renderer o %,
HEAL TH ¥ "4 (¥ 1mage (Script) R
Source Image Elui_hp_green_fill | ©
Color [| 2
Material 'None (Material) | ©
Raycast Target
Image Type f-rmed
Fill Method [Horizontal
Fill Origin [Left

Fill Amount O p— E
Preserve Aspect | |

—

[Set Native Size

Now to make the thumbnail for the Hero. Create another Image child of HeroHPBar.
Make sure it is the second child, and rename it HeroThumbnail.

Set its Source Image to ui_hp_hero_thumb, the Anchor Preset to Bottom Left, Pivot
to (0.5, 0), Pos X, Pos Y and Pos Z to (X:94,Y:3, Z:0), and finally, Width to 181 and
Height to 180.5.

= Hierarchy & -= 8 Animator © Animation # Scene % Navigation o= ©inspector | Fh o
Create - | (Al). Shaded ~|[20 || % | @) | @ || Gizmos - | (GrAl & & [HeroThumbnail [_IStatic «
v?:;::e' = Tag | Untagged ¢ Layer| ul |
ero as G =
» MyGameManager V.- Rect ;I_'ransform o %
left Pos X Pos Y Pos Z

¥ UlCanvas
¥ HerolLifeBar
HeroHPBack
¥ HeroHPBar
HeroHPFill

\ HEALTH ' o B o
' ‘j— O] s 505] (o]
& s

HeroThumbnail Min X0 YO
EventSystem 3 Max X 0 Y 0
= - e J [pivot X 0.5 Y 0 1
Rotation X [0 Iv[o zlo
Scale x[1 v [x lz[x
@ Canvas Renderer S
v Im Scri i
Color [-—l f
Material [None (Materia) | ©
Raycast Target
Image Type
Preserve Aspect ||
| SetNatveSize |

That’s it for your hero’s UI. Guess what you’ll do next — that’s right, it’s time for some
scripting to add control for the life bar.

Create a new C# script in the Scripts folder named LifeBar. Open the script and replace
its contents with the following:
//1

using UnityEngine;
using UnityEngine.UI;

public class LifeBar : MonoBehaviour {

//2
public Image filllmage;
public Image thumbnailImage;

//3
public Sprite[] fillSprites;

1. LifeBar class will use the namespace UnityEngine.UI because the Ul components
and classes are inside that namespace.

2. fillImage is the progress bar this script will be attached to. thumbnailImage is a
reference to the hero’s thumbnail.

3. This stores an array of sprites to color the progress bar. These will range from red
(low health) to green (full health).

Add the following methods below the variable declarations:

//1
void Start() {
SetProgress(1.0f);

//2
private Sprite SpriteForProgress(float progress) {
if (progress >= 0.5f) {
return fillSprites|[0];

b
if (progress >= 0.25f) {
return fillSprites([1];

¥
return fillSprites[2];
}

//3

public void SetThumbnail(Sprite image, Color color) {
thumbnaillmage.sprite = image;
thumbnailImage.color = color;

}

/74

public void SetProgress(float progress) {
fillImage.fillAmount = progress;
fillImage.sprite = SpriteForProgress(progress);

//5
public void EnableLifeBar(bool enabled) {
foreach (Transform tr in transform) {
tr.gameObject.SetActive(enabled);

}
These methods establish the behavior of the LifeBar class.
1. Start sets the LifeBar to the full value of 1.0.

2. SpriteForProgress, a helper method, returns a sprite for a given progress
parameter. When progress is 0.5 or higher, it returns the first sprite. When it’s .25
or higher you get the second sprite. Otherwise, it returns the third and last sprite.
Note that the fillSprites array will be set in the Inspector when in the game.

3. SetThumbnail replaces the sprite parameter of thumbnailImage. It also introduces a
color parameter that will tint the thumbnailImage.

4. SetProgress updates the fillImage progress bar fill and gets the fill sprite via the
helper method SpriteForProgress.

5. EnableLifeBar accepts the enabled parameter to toggle the life bar and its children
on or off.

Save the script and return to the editor. You’ve just finished the pompadoured hero’s
life bar!

Health bar for the enemy

The enemy health will display on the right side of the screen, opposite of the hero’s
indicator. It’ll display when an opponent takes a hit.

HERALTH

RS R

N

"y

For convenience, the enemy’s health indicator is mostly complete. You’ll just add the
LifeBar component.

Import EnemyLifeBar.unitypackage from the Unity Packages folder, which contains
sprites and a prefab for the enemy’s life bar.

[JoN) Import Unity Package

EnemyLifeBar

v [G Images
\4 &5 GameHUD
=ui_hp_back.png

i ui_hp_bar_flipped.png {NEW|
——ui_hp_green_fill.png
@ui_hp_roMLthumb.png { NEW |
v [&3 prefabs
W EnemyLifeBar.prefab {NEW]|

Drag the EnemyLifeBar prefab from the Prefabs folder onto UICanvas in the
Hierarchy, and then set it as the second child of UlCanvas.

K

The enemy’s life bar will appear on the right side of the camera’s view.

= Hierarchy I &=
| create -| (@Al

I v € Game*

» MyHero
» MyGameManager
¥ UlCanvas

Animator

2 Navigation

© Animation | # Scene
= 0 | <) &

o |) | I

» HeroLifeBar
EnemyLifeBar
EventSystem

If the EnemyLifeBar is out of place, set RectTransform to Anchor Preset Top Right,
its Pivot to (X:1,Y:1),Pos X,Y,Z to (X:0, Y:0, Z:0), Width to 505, Height to 200,
Rotation to (X:0, Y:0, Z:0) and Scale to (X:1, Y:1, Z:1).

© Inspector | B =
@ 'EnemyLifeBar [Static «
Tag | EnemyLifeBar 4| Layer| ul +
Prefab | Select | Revert | Apply |
¥ Rect Transform @ = %
right Pos X Pos Y Pos Z
X o o 0 |
) |:] Width Height
505 200 |
¥ Anchors
Min X1 Y|l
Max X1 Y|l
Pivot x[1 [¥[1 |
Rotation X 0 YO 'Zo |
Scale X |1 [¥[1 |z [1 |

Both life bars now display on the screen. Now you need to add the LifeBar component
for control over their behavior.

Add the LifeBar component to HeroLifeBar, drag HeroHPFill to the Fill Image slot
and HeroThumbnail to Thumbnail Image.

Drag ui_hp_green_fill, ui_hp_yellow _fill and ui_hp_red_fill — in that exact order —
from the Images\GameHUD folder to FillSprites.

© Inspector

¥ [HeroLifeBar | [CIstatic +
Tag [HerolLifeBar 3] Layer[ul 3]
b5 Rect Transform o %
v [Life Bar (Script) a3 %
Script + LifeBar o}
Fill Image | ®s HeroHPFill (Image))
Thumbnail Image |®s HeroThumbnail (Image) e
Fill Sprites
Size 3
Element 0 [Elui_hp_green_fill C)
Element 1 Iﬁui_hp_yellow_fill o
Element 2 Elui_hp_red_fill [o]

Select EnemyLifeBar, add a LifeBar component to it, and then fully expand it and its
children. Drag EnemyHPFill to Fill Image, then drag EnemyThumbnail to
Thumbnail Image, and then drag the following to FillSprites in the order listed:
ui_hp_green_fill, ui_hp_yellow fill and ui_hp_red_fill.

[©nspector e
(¥ [EnemyLifeBar | [Istatic +
Tag[EnemyLifeBar #] Layer[ul #]
Prefab | Select I Revert] Apply]
> Rect Transform o %,
v o [Life Bar (Script) @ = %
Script + LifeBar o]
Fill Image *4 EnemyHPFill (Image) (o]
Thumbnail Image *s EnemyThumbnail (Image) (o]
Fill Sprites
Size 3
Element 0 Elui_hp_green_fill []
Element 1 [Elui_hp_yellow_fill [o]
Element 2 Elui_hp_red_fill [c]

Note: Tags make it easy to access these LifeBar components from a script.

Open the Tags List by selecting Edit \ Project Settings \ Tags & Layers in the Top
Menu and expanding Tags.

Add HeroLifeBar and EnemyLifeBar as new tags.

®mspector L]
*E} Tags & Layers @ =
¥V Tags
- Tag 0 Hero |
Tag 1 HeroLifeBar
Tag 2 EnemyLifeBar
+ -

Select HeroLifeBar in the Hierarchy then set its tag to HeroLifeBar. Select
EnemyLifeBar and set its tag to EnemyLifeBar.

© Inspector

(¥ [HerolLifeBar | [static «
Eq | HeroLifeBar & l,ayer[ul %]

© Inspector

¥ 'EnemyLifeBar | [Jstatic +
ll'ag [EnemyLifeBar #]I Layer[ul ¥]
Prefab | Select | Revert | Apply J

Disable the children of EnemyLifeBar by selecting EnemyHPBack and EnemyHPBar in
the Hierarchy and clearing the checkbox near the top-left of the Inspector. By default,
these GameObijects will be disabled. They’ll be enabled when the enemy life bar needs
to be displayed.

= Hierarchy &= 2 nator © Animatior 2 Navigatio . ctor e
.|l @ o -
| Create -| (AT F — [JStatic v
v < Game* = Tag [Untagged + Layer[ul i)
» MyHero Multiple | Instal Disabled J
» MyGameManager ultiple nstance isable
¥ UlCanvas - Rect Transform o
¥ HeroLifeBar HEALTH right Pos X Pos Y Pos Z
HeroHPBack f) @ [= | = -]
¥ HeroHPBar £ Width Height
HeroHPFill B / — — icialuB
HeroThumbnail NS ¥ Anchors
LifeBar PN .. Min Xx[1 Y0
EnemyHPBac} Max X1 Y 0
EnemvHPBar Pivot x[05 Y05
EventSystem
Rotation X 0 v[o zlo]
Scale x[— ¥ [1 |z[1 |
Canvas Renderer @ =
¥ "a (M Image (Script) @ =
Source Image = o)
Color v
Material None (Material) (]
Raycast Target ¥4
Image Type
Preserve Aspect [|

Select EnemyLifeBar from the Hierarchy and click Apply in the Inspector to save its
prefab.

[@mspecor L e
¥ 'EnemyLifeBar | [static «
Tag[EnemylLifeBar :] Layer| Ul 3
Prefab | Select [Revert !Tl
» 2 Rect Transform @ 3 %

The scene is now set!

Now you need to allow the scripts to use the life bars. Open the Actor script and add the
following variables right above the Start() method:

public LifeBar lifeBar;
public Sprite actorThumbnail;

lifebar saves a reference to a LifeBar component, while actorThumbnail makes a
reference to the thumbnail of this actor.

When the actor takes damage, the value of the 1ifeBar needs to update, so insert the

following script at the end of TakeDamage:
lifeBar.EnableLifeBar(true); // 1
lifeBar.SetProgress(currentLife / maxLife); // 2
Color color = baseSprite.color; // 3
if (currentLife < 0) { // 4
color.a = 0.75f;

}
lifeBar.SetThumbnail(actorThumbnail, color); // 5

This block updates the actor’s lifebar when it takes damage. Specifically, it:
1. Shows the lifebar.

2. Sets the lifebar amount to the percentage value of the actor’s life.

3. Gets the color of this actor’s sprite.

4. Makes the actor semi-transparent when its health falls below 0.

5. Places the specific actor’s thumbnail next to the lifebar and tints it with the actor’s
color.

Save the script.

Open the Hero script — you need a reference in the script to the hero’s lifebar. Add the
following override right above the Update() method:

protected override void Start() {
base.Start();
lifeBar =
GameObject.FindGameObjectWithTag("HeroLifeBar").GetComponent<LifeBar>();
lifeBar.SetProgress(currentLife / maxLife);

}
This method overrides the Actor’s Start method.
1. Calls the base class Start () method.

2. Searches the GameObjects for the one tagged with HeroLifeBar and gets the
attached LifeBar component.

K

3. Updates the lifebar’s progress.

Save the Hero script and open the Enemy script to implement references for the
dreadful droid lifebar. Add the following override method:

protected override void Start() {
base.Start();

lifeBar =
GameObject.FindGameObjectWithTag("EnemyLifeBar").GetComponent<LifeBar>();

lifeBar.SetProgress(currentLife / maxLife);

This method behaves similarly to the one you set up for the hero, but it searches for the
EnemyLifeBar tag instead of the HeroLifeBar tag.

Save this script and open the GameManager script. Add the following variable at the
top of the script.

public LifeBar enemyLifeBar;
This variable creates a reference to the enemy’s life bar.

Next, in the CompleteCurrentEvent method, insert the following line before the if (!
hasRemainingEvents) condition:

enemyLifeBar.EnableLifeBar (false);
This hides the enemy’s life bar when the player completes a battle event.
Save this script and return to the editor. It’s time to assign sprites.

Select MyHero in the Hierarchy and set the Actor Thumbnail variable of the hero to
ui_hp_hero_thumb.

v o ¥ Hero (Script) @ = %
Script Hero (o]
Base Anim +% HeroAnimator (Animator) (o]
Body . MyHero (Rigidbody) [0}
Shadow Sprite . ShadowCharacter (Sprite Render ©
Speed 2
Is Grounded J
Base Sprite *. HeroSprite (Sprite Renderer) [0}
Is Alive (v
Max Life 100
Current Life 100

» Normal Attack
Is Knocked Qut]

Hit Spark Prefab s HitParticle [o]
Life Bar None (Life Bar) (o]

I Actor Thumbnail |.’v‘.ui_hp_hero_thumb | j

Walk Speed 2

Select the EnemyRobot prefab in the Prefabs folder, and then set the robot’s Actor
Thumbnail variable to ui_hp_robot_thumb.

v « ¥ Robot (Script) @ =
Script Robot (o]
Base Anim |32 RobotAnimator (Animator) | o
Body | EnemyRobot (Rigidbody) | o
Shadow Sprite | = ShadowCharacter (Sprite Renderer, ©
Speed 2 l
Is Grounded O
Base Sprite [> EnemyBody (Sprite Renderer) |]
Is Alive
Max Life |100]
Current Life 1100 |

» Normal Attack
Is Knocked Out O
Hit Spark Prefab |\ HitParticle]
Life Bar None (Life Bar) o
Actor Thumbnail .o, ui_hp_robot_thumb GI
Walker | = EnemyRobot (Walker) | ©
= as sl T 3

Select MyGameManager in the Hierarchy and drag UICanvas’ child, EnemyLifeBar to
the Enemy Life Bar slot.

v i ¥ Game Manager (Script) @ =
Script . GameManager (0]
Actor « MyHero (Hero) | o
Camera Follows
Camera Bounds « Main Camera (CameraBounds) | o
Current Level Data | [LevellData (LevelData) o
Has Remaining Events ||

b Active Enemies

P Spawn Positions
Current Level Backgroi None (Game Object) o
Robot Prefab |\ EnemyRobot | o
Walk In Start Target | IntroStartMarker (Transform) | ©
Walk In Target | A IntroEndMarker (Transform))
Walk Out Target | A ExitMarker (Transform) | ®

¥ Levels

Size 2 |
Element 0 [l Level1Data (LevelData) | o
Element 1 Ll Level2Data (LevelData) o}
| Enemy Life Bar « EnemyLifeBar (LifeBar) q

Click Play and commence with droid bashing.

The hero’s HUD will appear at the top of the screen and display his current health.
Watch how the EnemyLifeBar shows itself when you punch a droid. Awesome!

7

v

7
7

Keep bashing until you finish a battle event. Hmmm...something is missing. What could
it be?
Give me a sign!

Beat-em-up games typically tell you to go forward with an unmissable “go” graphic that
shows up after you’ve killed all the things. Arrows are often involved.

In the case of this game, the go sign will be a simple string of characters dressed in a
font. A left angle bracket will serve as the arrow.

\

”
’
’
/s

o Ty

Import Fonts.unitypackage from the Unity Packages folder, which contains the 04b03
font.

® 0 Import Unity Package
Fonts
v [G5 Images
v [GiFonts
¥ (4] 04b03.1tf [NEW|
| Al || None | Import

Select UICanvas in the Hierarchy, create a new UN\Text and rename it GoIndicator —
you’ve just created a new GameObject with an attached text component.

= Hierarchy m
|create | @AT)
v @ Game* Y
» MyHero

¥ UlCanvas
» HerolLifeBar
» EnemyLifeBar

EventSystem

Set its Anchor Preset to Top Right and change Pos X,Y,Z to (X:-196, Y:-263, Y:0).

Set Width to 120 and Height to 67 to position the text near the top-right corner of the
main camera’s frame.

2 Navigation

= e Inspector | &=

© Animation # Scene
5 <) .

¥ [GoIndicator | Cstatic +
Tag | Untagged +| Layer| ul ™|
0 v55 Rect Transform P - 8
Tight Pos X Pos Y Pos Z
-196 |[-263 o
S @ Width Height
|E [120 ez 1 [&i]m
¥ Anchors
Min X v
Max X1 Jv [
Pivot x[os v[os |
Rotation X0 Yo 'zlo]
Scale X1 N4E 1z[1 |
@ canvas Renderer o
v M Text (Script @ = =
Text
New Text
Character
Font |4 Arial | o
Font Style | Normal ™
Font Size 14]
Line Spacing (1 |
Rich Text 4

In the text component, set Text to GO>, set Font to 04b@3, change Font Size to 64, and
then set the Color to pure white.

28 Animator © Animation # Scene X Navigation o= © Inspector | a .=
i : ¥ [Golndicator | CIstatic +
Tag | Untagged +| Layer| w i)
»55 Rect Transform o
@ canvas Renderer o
v [« Text (Script) o 2,
Text
GO>
Character
Font (4 04b03 el
Font Style Normal .
| Font Size 64
Line Spacing i
Rich Text ¥4
Paragraph
Alignment BH==
Align By Geometry [|
Horizontal Overfloy Wrap ™
Vertical Overflow [Truncate m
Best Fit Ll
[color | | A
Material |None (Material))
Raycast Target 4
Disable this GameObiject.
© Inspector | =
[J| GoIndicator | [Jstatic «
- Tag | Untagged +) Layer[ul 3]

When a battle event ends, the go sign should flicker. You’ll set up this behavior in a
script.

K

Open GameManager.cs and add the following variable below enemyLifeBar:
public GameObject goIndicator;
This adds a reference to the go indicator.

Add the following methods below AnimateNextLevel method to animate the go
indicator:

//1

private void ShowGoIndicator() {
StartCoroutine(FlickerGoIndicator(4));

}

//2
private IEnumerator FlickerGoIndicator(int count = 4) {
while (count > 0) {
goIndicator.SetActive(true);
yield return new WaitForSeconds(0.2f);
goIndicator.SetActive(false);
yield return new WaitForSeconds(0.2f);
count—;

¥
s

Here’s how the animation works:
1. ShowGoIndicator triggers the flicker by starting the FlickerGoIndicator coroutine.

2. FlickerGoIndicator animates the flicker according to the parameter count times —
it toggles the active state for GoIndicator between on and off every 0.2 seconds.

Now you’ll add method calls to trigger this animation. Insert the following line at the
end of DidFinishIntro:

ShowGoIndicator();

This method creates a “go time” queue, in the form of a flicker on the indicator at the
end of the hero’s walk-in animation.

Add the below else condition to the bottom of the CompleteCurrentEvent () method.

else {
ShowGoIndicator();

}
This triggers the indicator when the player finishes a battle event.

Save the script and open the editor. Select MyGameManager in the Hierarchy. Set the
Go Indicator variable in the GameManager script to UICanvas\Golndicator.

K

"= Hierarchy e Inspector

SN D ;
| create -| (@eAT @ [MyGameManager | Cstatic

v < Game* = Tag [Untagged +] Layer[Default)|

P A Tansom 2

¥ UlCanvas v e ¥ Game (Script) &,

» HeroLifeBar Script . GameManager o]

» EnemyLifeBar Actor o]
Camera Follows v

EventSystem Camera Bounds {: MainCamera (CameraBou, ©

CurrentLevel Data |None (Level Data) | ©

Fas Remaining Events [|
P ActiVe,Enemies

Current Lebel Backgro None (Game Object)

[c]
Robot Prefab’ \ EnemyRobot o}
Walk In Start Takget A IntroStartMarker (Transfc ©
Walk In Target AIntroEndMarker (Transfoi ©
Walk Out Target A ExitMarker (Transform) = ©

» Levels
Enemy Life Bar o

Go Indicator [#Golndicator | ©
» |G| ¥ Input Handler (Script)

Save the scene and click Play! Watch for the flickering “GO>” sign when the game starts
and after you’ve defeated every enemy in a battle event.

= _ /% - (sam

s

2 S N\ RN SZAANNNNNNMN

Quantify that damage for me!

A good strike to a metal hunk of junk is always more satisfying when you know just how
badly you’ve hurt it. That’s precisely what this UI feature is all about!

HEALTH

Import HitValueText.unitypackage from the Unity Packages folder, which contains a
prefab you’ll use for the hit value.

Next, you will use your newly found UI skills to add visual cues such as the one shown
below.

HERLTH HERALTH

o3

=

In the previous chapter, you added a hit effect animation for every attack that connects.
However, with all the beat-downs going on, and all the hero’s awesome moves, it’s hard
to tell which attack is the most effective. As the developer, you have knowledge of all
the numbers in the game, including how much damage each attack inflicts. But the
average player has no way of knowing, for example, that the second punch is stronger
than the first punch.

K

One obvious solution is to display the damage numbers for every attack as it occurs, as
long as the attack connects with an enemy. That’s what you’ll do next.

Import HitValueText.unitypackage from the Unity Packages folder, which contains a
prefab you’ll use for the hit value.

[JON Import Unity Package

HitValueText

v [&iImages
v [J GiFonts
04b03.ttf

v & Prefabs

¥, ¥ Hitvalue.prefab WEW
v & Scripts

DestroyTimer.cs | NEW |

MoveUpper.cs | NEW |

The HitValue prefab uses two text components to render the damage value: a shadow
component and an outline component.

© Inspector a =
¥ [Hitvalue [_|Static
Tag | Untagged 4| Layer| u |
» -5 Rect Transform o,
@ canvas Rend o %%
v [« Text (Script) o %,
Text
50
Character
Font (4 04b03 e
Font Style [Normal ;)
Font Size 124 |
Line Spacing (1 |
Rich Text
Paragraph
Alignment = = | =
Align By Geometry [|
Horizontal Overflow | Wrap +]
Vertical Overflow [Truncate +]
Best Fit [
Color [12
Material |None (Material) e
Raycast Target
v 1 [¥ Shadow (Script) @ %
Script Shadow (o]
Effect Color 2
Effect Distance x1 Jy[1]
Use Graphic Alpha
v [¥ Outline (Script)
Script O Outline (o]
Effect Color I
Effect Distance x[1 Jy[1 |
Use Graphic Alpha 4

This prefab also uses two new components: A DestroyTimer component, which
destroys the GameObject to which it is attached after a set time, and a MoveUpper
component that moves any Transform in any direction as determined by its Move

Direction parameter.

v « v Destroy Timer (Script) @ = %=
Script DestroyTimer (o]
v = ¥ Move Upper (Script) @ = %
Script MoveUpper (o]
Move Direction X0 |Y |1 |Z 0
Speed 50

Create a new Canvas in the Hierarchy. Name it WorldCanvas — this will be the parent

to all the damage values.

Set its Render Mode to World Space. Set its Event Camera to MainCamera, which is
a child of MyGameManager, and adjust Position to (X: @, Y: 0, Z: 0).

Set Scale to (X:0.02, Y:0.02, Z:0.02), and then adjust its Width to 1024 and Height

to 768.

© Inspector | o=
= ¥ ‘WorldCanvas [static v
Tag | Untagged + | Layer| Ul s
v55 Rect Transform M
Pos X Pos Y Pos Z
0 0 I
Width Height
1024 768 i | R
¥ Anchors
Min X0 YO
Max X 0 Y 0
Pivot X 0.5 Y 05 |
Rotation X0 YO0 Z0
| Scale X 0.02 Y 0.02 Z 0.02 |
v Canvas 3,
|Render Mode [World Space :
Event Camera % MainCamera (Camera) _OI
Sorting Layer | Default &l
Order in Layer 0

p——

Navigate to Edit \ Project Settings \ Tags & Layers and open the Tags & Layers
settings from the top menu. Add a tag named WorldCanvas.

© Inspector | " =
o) Tags & Layers o,
¥ Tags

Tag 0 Hero

Tag 1 HeroLifeBar

Tag 2 EnemyLifeBar

[Tag 3 WorldCanvas]
+ -

Select WorldCanvas in the Hierarchy and set its tag to WorldCanvas.

© Inspector | "=
4 & worldCanvas []Static
e Tag [WorldCanvas 3] Layer\ ul +

Open the Actor script. Add this using line to the top:
using UnityEngine.UI;

This using line includes a reference to the Ul namespace in the script so that it can
access the UnityEngine.UI.Text class.

Add the following variable below actorThumbnail:
public GameObject hitValuePrefab;

hitValuePrefab references the prefab you just imported. When an actor takes a hit, this
object will be instantiated.

Insert the code below at the end of the ShowHitEffects method:

//1

GameObject obj = Instantiate(hitValuePrefab);
obj.GetComponent<Text>().text = value.ToString();
obj.GetComponent<DestroyTimer>().EnableTimer(1.0f);

//2

GameObject canvas = GameObject.FindGameObjectWithTag("WorldCanvas");
obj.transform.SetParent(canvas.transform);
obj.transform.localRotation = Quaternion.identity;
obj.transform.localScale = Vector3.one;

obj.transform.position = position;

This code block instantiates the hitValuePrefab damage value GameObject.

K

1. Creates a new instance of the hitValuePrefab and sets its text to the amount of
damage taken. After one second, it triggers the DestroyTimer script.

2. Finds WorldCanvas by looking for the object tagged with the WorldCanvas tag. Then
it becomes the child of the damage value GameObject. Lastly, the damage value is
positioned in the place of the hit.

Now you’re ready to add the hit value prefab for the hero and robot. Save the script and
return to the editor.

Find the Hero component of MyHero. Find the HitValue prefab in the Prefabs folder
and drag it into the Hit Value Prefab slot.

© Inspector | o -
3 & MyHero [|Static
Tag | Hero ¢ | Layer| Friendly ;)
» .~ Transform o
¥ « (¥ Hero (Script) o
Script Hero (o]
Base Anim |32 HeroAnimator (Animator) | ©
Body ' A MyHero (Rigidbody) C
Shadow Sprite ['ShadowCharacter (Sprite Renderer) ©
Base Sprite 2l HeroSprite (Sprite Renderer) | ©
Speed 2 |
Is Grounded -
Max Life 100 |
Current Life 1100 |
Is Alive [
» Normal Attack
Is Knocked Out (J
Hit Spark Prefab |\ HitParticle | ©
Life Bar 'None (Life Bar))
Actor Thumbnail Elui_hp_hero_thumb [0}
[Hit Value Prefab s HitValue o]
Walk Speed 2 |
| D Cecnd c !

Select the EnemyRobot prefab in Assets / Prefabs and drag HitValue to its Hit Value
Prefab slot.

[®nspector [
¥ EnemyRobot | [Istatic «
Tag | Untagged 4 | Layer| Enemy ™
b _. Transform @ = %
v = [v Robot (Script) @ 3 %
Script Robot [0}
Base Anim 32 RobotAnimator (Animator))
Body A EnemyRobot (Rigidbody))
Shadow Sprite [51ShadowCharacter (Sprite Renderer) ©
Base Sprite Il.?i EnemyBody (Sprite Renderer)] [0}
Speed 2 |
Is Grounded]
Max Life 1100 |
Current Life 1100 |
Is Alive 4
» Normal Attack
Is Knocked Out O
Hit Spark Prefab |\ HitParticle)
Life Bar 'None (Life Bar))
Actor Thumbnail ui_hp_robot_thumb [c]
| Hit Value Prefab lHitvaluee oI
Ai c FnemuBnhnt (Fnemudl) o

Save the scene and the project. Run the game.

Every time you destroy a droid, you’ll get the satisfaction of knowing exactly how much
damage you did to that miserable hunk of junk.

'F ‘ i
P e

o e

TN N O\

Congrats for finishing up the health bars! If you’ve been glued to your seat since you
cracked open this chapter, now is a great time to treat yourself to a break. You just
finished the HUD, and next up is tackling the missing Mobile UI.

K

Bashing droids on-the-go with mobile Ul

Things are coming along in Pompadroid. So far, you’ve built two life bars, a go indicator,
and a damage value indicator.

At this point, it’s time to turn your attention to the UI for mobile devices. Your keyboard
works, but there is nothing for players who want to thrash droids on the go.

Pompadroid’s on-screen controls will feature a directional pad (d-pad) for movement
and two buttons: one for attacking and one for jumping. You’ll position these controls
at the bottom of the screen.

Implementing the d-pad

Import ControlCanvas.unitypackage from the Unity Packages folder. This package
contains the sprites you’ll need to implement the controls. Note the prefab named
ControlCanvas — its hierarchy is already complete.

[JoN | Import Unity Package
ControlCanvas
v [G images
v [&5 JoyPad
@button_a_normal.png {NEW
| button_a_selected.png NEW]
@button_b_normal.png LED
v Iilbutton_b_selected.png LED
lsi|dpad_center.png [NEW|
|m/dpad_down.png [NEW |
lmi|dpad_downleft.png NEw |
lmi|dpad_downright.png [NEW|
(¥ limi|dpad_left.png [NEW|
lmi|dpad_right.png [NEW|
@dpad_up.png [NEW|
|| dpad_upleft.png NEW|
@dpad_upright.png [NEW
v [&5 Prefabs
4 ControlCanvas.prefab {NEW|
ai

Drag the ControlCanvas prefab into the scene. Set the Render Camera in the Canvas
component to MainCamera.

| ==| © inspector | o
¥ [ControlCanvas [static «

Tag | Untagged ¢ Layer(ul)

= Hierarchy |
Creat oAl

a-= Animator O | *#Scene
- &) | -

Select Revert Appl)
¥ MyGameManager Prefab | I I pply]

) ¥5C Rect Transform It %
LeftCamBounds # [Some values driven by Canvas. |
RightCamBounds Pos X Pos Y Pos Z
zpawm;owg 5 8.029999 -6.743975

pawnRowz Width Height
:,:»awan3 2047.626 115179
IwnRow:
Szwnkom ¥ Anchors
InroStartiarker o o G
IntroEndMarker
ExitMarker Pivot X 0.5 Y 0.5
¥ UiCanvas Rotation x[29.983 |Y[0 zlo
» HeroLifeBar Scale X [0.008682 | Y [0.008682:| Z [0.008682
» EnemyLifeBar

Golndicator v[¥ canvas I %
Render Mode +
ControlCanvas Pixel Perfect U

Render Camera s MainCamera (Camera) |
m—
¥/ Favorites Assets »\Prefabs »
©, Al Materiald > s ControlCanvas
© All Models EnemyLifeBar

Plane Distance 1 |

Sorting Layer Default :
Order in Layer 0

LAl Prefabs |-\ EnemyRobot v[E] ¥ Canvas Scaler (cripy @ = %
(CLAlScripts | g HitParticle Ul Scale Mode Scale With Screen Size |
& Map
VS Assets » i Mapl Reference Resolution X [2048 Y 1536
» & Animation Screen Match Mode [Shrink
= - -

To make the UI work, you’ll need a class that handles joystick movement.

The diagram below shows how the d-pad calculates direction. First, it detects a touch
on the d-pad sprite, shown as the red circle. Then it takes the touch position and the
center of the d-pad sprite to calculate the direction vector.

K

The direction vector then becomes the input vector, which allows the hero to move
around the map. The d-pad sprite also changes depending on which sprite is currently
selected.

Note that the touch action doesn’t end until the player releases their finger from the d-
pad. This allows the player to change direction by dragging over the d-pad sprite.

Scripting for touch handling

Create a new C# script called ActionDPad. Open the file and replace its contents with
the following lines:

using System;

using UnityEngine;

using UnityEngine.Events;

using UnityEngine.EventSystems;
using UnityEngine.UI;

public class ActionDPad : UIBehaviour, IBeginDragHandler,
IEndDragHandler, IDragHandler, IPointerDownHandler, IPointerUpHandler {

//1

public enum ActionPadDirection {
Up =1,
UpRight = 2,
Right = 3,
DownRight,
Down,
DownLeft,
Left,
UpLeft,
None = 999

¥

//2
[SerializeField]
float radius = 1;
[HideInInspector]
bool isHeld;

//3
[SerializeField]

Sprite[] directionalSprites;

//4

[Serializablel

public class JoystickMoveEvent : UnityEvent<ActionPadDirection> { }
public JoystickMoveEvent OnValueChange;

}

The initial declaration of this class includes the following variables:
1. ActionPadDirection holds all possible directions.

2. radius determines the maximum radius for touches to register. isHeld sends up a
flag when a touch happens.

3. This array of sprites holds the d-pad sprites for the button presses.

4. This UnityEvent class declaration processes d-pad movement for the UI’s
EventSystem.

Add the following method below the variables:

private ActionPadDirection UpdateTouchSprite(Vector2 direction) {
//1
float angle = Mathf.Atan2(direction.x, direction.y) * Mathf.Rad2Deg;

//2
if (angle < 0) {
angle += 360;

//3

ActionPadDirection currentPadDirection = ActionPadDirection.None;

if (angle <= 22.5f || angle > 337.5f) {
currentPadDirection = ActionPadDirection.Up;

} else if (angle > 22.5 && angle <= 67.5) {
currentPadDirection = ActionPadDirection.UpRight;

} else if (angle > 67.5 && angle <= 112.5) {
currentPadDirection = ActionPadDirection.Right;

} else if (angle > 112.5 && angle <= 157.5) {
currentPadDirection = ActionPadDirection.DownRight;

} else if (angle > 157.5 && angle <= 202.5) {
currentPadDirection = ActionPadDirection.Down;

}

} else if (angle > 202.5 && angle <= 247.5) {
currentPadDirection = ActionPadDirection.DownlLeft;

} else if (angle > 247.5 && angle <= 292.5) {
currentPadDirection = ActionPadDirection.Left;

} else if (angle > 292.5 && angle <= 337.5) {
currentPadDirection = ActionPadDirection.UpLeft;

+

//4

int index = 0;

if (currentPadDirection != ActionPadDirection.None) {
index = (int)currentPadDirection;

+

GetComponent<Image>().sprite = directionalSprites[index];
return currentPadDirection;

This method updates the d-pad’s look and returns the ActionPadDirection of the
direction parameter.

1.

Calculates the angle of the direction vector and converts it to degrees using the
built-in Mathf.Atan method.

Normalizes the angle to a value between @ and 360 by adding 360 when the angle is
less than zero.

Converts angle to an ActionPadDirection after checking if the angle is between a
certain range of values. See the diagram below for the values.

Updates the Image using the directionalSprites array and returns
currentPadDirection.

337.5° Up 22.5°

UpLeft UpRight
292.5° 67.5°
Left Right
247.5° 112.5°
DownLeft DownRight

202.5° pown 157.5°

Next up is adding three methods to the class:

p

K

ublic void OnBeginDrag(PointerEventData eventData) {

if (!IsActive()) {
return;

¥

//1

RectTransform thisRect = transform as RectTransform;

Vector2 touchDir;

bool didConvert =
RectTransformUtility.ScreenPointToLocalPointInRectangle(thisRect,
eventData.position, eventData.enterEventCamera, out touchDir);

//2
if (touchDir.sqrMagnitude > radius * radius) {
touchDir.Normalize();
isHeld = true;
ActionPadDirection currentDirection = UpdateTouchSprite(touchDir);
) OnValueChange.Invoke(currentDirection);
b

//3

public void OnEndDrag(PointerEventData eventData) {
OnValueChange.Invoke(ActionPadDirection.None);
GetComponent<Image>().sprite = directionalSprites|[0];

//4
public void OnDrag(PointerEventData eventData) {
if (isHeld) {

RectTransform thisRect = transform as RectTransform;

Vector2 touchDir;

RectTransformUtility.ScreenPointToLocalPointInRectangle(thisRect,
eventData.position, eventData.enterEventCamera, out touchDir);

touchDir.Normalize();

//2
ActionPadDirection currentDirection = UpdateTouchSprite(touchDir);
OnValueChange.Invoke(currentDirection);
}
}

These methods allow ActionDPad to receive the OnDrag events.

1. OnBeginDrag converts the touch position to a local Vector2 using the
RectTransformUtility.ScreenPointToLocalPointInRectangle method.

2. If the magnitude of the calculated vector is less than the radius variable, then the
vector is reset so that it’s between a value of @ and 1. isHeld is set true, then this
statement updates the d-pad sprite and invokes the OnvalueChange event.

3. OnEndDrag handles updates when the drag action is complete. It calls the
OnValueChange event with a value of ActionPadDirection.None. Then it updates the
sprite to the first in the array — the “no-direction-pressed” sprite.

4. O0nDrag handles drag actions that go across the screen. It checks if the isHeld

variable is set to true, and if it is, processes the touch like in the OnBeginDrag
method.

Add the following IPointerDownHandler and IPointerUpHandler interface methods
below the OnDrag() method:

//1

public void OnPointerDown(PointerEventData eventData) {
RectTransform thisRect = transform as RectTransform;
Vector2 touchDir;
RectTransformUtility.ScreenPointToLocalPointInRectangle(thisRect,

eventData.position, eventData.enterEventCamera, out touchDir);
touchDir.Normalize();

//2
ActionPadDirection currentDirection = UpdateTouchSprite(touchDir);
OnValueChange.Invoke(currentDirection);

}

//3

public void OnPointerUp(PointerEventData eventData) {
OnValueChange.Invoke(ActionPadDirection.None);
GetComponent<Image>().sprite = directionalSprites[0];

}
These two interface methods handle what happens when the player taps — not drags —
on the d-pad.
1. OnPointerDown converts the touch position to the local position on the ActionDPad
RectTransform.
2. It then updates the d-pad sprite using UpdateTouchSprite, and then invokes the
OnValueChange event method with the calculated ActionPadDirection.
3. OnPointerUp simply does the same thing as OnEndDrag. It returns the d-pad to its

neutral state.

With that, you’ve finished the ActionDPad script. Save it.

Open InputHandler.cs. You need to modify the script so it’s possible to toggle between
on-screen buttons and keyboard input.

Start by adding this using directive at the top of the file:

using UnityEngine.EventSystems;

This will allow the class to use Event classes.

K

Add the following variables below maxJumpDuration:

bool didAttack;
public bool useUI = true;

didAttack will help prevent missing attack chains for the hero, and useUI will
ultimately determine whether to use the keyboard or UI buttons for input.

Replace the Update method with the following:

void Update() {
if (useUI) {
if (didAttack) {
didAttack = attack = false;
} else if (attack) {
didAttack = true;

¥

} else {
horizontal = Input.GetAxisRaw("Horizontal");
vertical = Input.GetAxisRaw("Vertical");
attack = Input.GetButtonDown("Attack");

if(!'jump && !'isJumping && Input.GetButton("Jump")) {
jump = true;
lastJumpTime = Time.time;
isJumping = true;
} else if(!Input.GetButton("Jump")) {
jump = false;
isJumping = false;

if(jump && Time.time > lastJumpTime + maxJumpDuration) A{
jump = false;

¥

You added an if statement that checks useUI’s value. When useUI is true, the
ActionDPad handles movement and on-screen buttons. When useUI is false, the script
directs the game to use the keyboard.

Add the following button methods to the script:

//1

public void DidPressAttack(BaseEventData data) {
attack = true;
didAttack = false;

b

//2

public void DidPressJump(BaseEventData data) {
if (!jump) {

K

jump = true;
lastJumpTime = Time.time;
}
b

//3
public void DidReleaseJump(BaseEventData data) {
jump = false;

As you’d expect, the player triggers the above actions with UI buttons.

1. DidPressAttack sets attack to true and didAttack to false. It is called when the
player presses the on-screen attack button.

2. DidPressJump triggers the jump when the InputHandler isn’t in a jump state. It is
called when the player presses the jump button.

3. DidReleaseJump sets the jump variable of InputHandler to false. It is called when
the user releases the jump button.

Now add these methods:

//1
public Vector2 VectorForPadDirection(ActionDPad.ActionPadDirection
padDirection) {
float maxX = 1.0f;
float maxY = 1.1f;
switch (padDirection) {
case ActionDPad.ActionPadDirection.None:
return Vector2.zero;
case ActionDPad.ActionPadDirection.Up:
return new Vector2(@, maxY);
case ActionDPad.ActionPadDirection.UpRight:
return new Vector2(maxX, maxY);
case ActionDPad.ActionPadDirection.Right:
return new Vector2(maxX, 0);
case ActionDPad.ActionPadDirection.DownRight:
return new Vector2(maxX, -maxY);
case ActionDPad.ActionPadDirection.Down:
return new Vector2(0, -maxY);
case ActionDPad.ActionPadDirection.DownLeft:
return new Vector2(-maxX, -maxY);
case ActionDPad.ActionPadDirection.lLeft:
return new Vector2(-maxX, 0);
case ActionDPad.ActionPadDirection.UpLeft:
return new Vector2(-maxX, maxY);
default:
return Vector2.zero;
b

iy
//2

public void OnActionPadChangeDirection(ActionDPad.ActionPadDirection
direction) {

K

Vector2 directionVector =

}

1. VectorForPadDirection is a helper method that converts the ActionPadDirection
parameters into a Vector2. The diagram below shows the ActionPadDirection and

corresponding directionVector values.

2. OnActionPadChangeDirection gets the corresponding directionVector values and
sets horizontal to the x-value of directionVector and vertical to the y-value of

directionVector.

VectorForPadDirection(direction);
horizontal = directionVector.Xx;
vertical = directionVector.y;

UpLeft
(-1.0,1.1)

Left
(-1.0,0)

DownLeft
(-1.0,-1.1)

Up
(0,1.1)

Down
(0,-1.1)

UpRight
(1.0,1.1)

Right
(1.0,0)

DownRight
(1.0,-1.1)

InputHandler is now complete. Save the script and return to Unity.

Wiring up the d-pad

Expand ControlCanvas and its child Buttons. Select B and add a Button component it.

Set Transition to Sprite Swap, button_b_normal as the value of the Highlighted
Sprite field, and button_b_selected as the values for both Pressed Sprite and Disabled

Sprite.

Now your sprites will change as the player presses the d-pad.

K

[0 mspecor]

v B | [CIstatic «
Tag | Untagged : | Layer| u s
Prefab | Select [Revert | Apply

> 3@ Rect Transform
Canvas Renderer

» "4 ¥ Image (Script)

¥ ox [Button (Script)

3| =i|f =i|f =)
LINEIREIRE 8
#peel

Interactable
ITransition Sprite Swap

Target Graphic
Highlighted Sprite [button_b_normal |
Pressed Sprite [Zlbutton_b_selected |
Disabled Sprite [zl button_b_selected |

Navigation | Automatic ™

[Visualize]
On Click ()

List is Empty
+ -

Now to make that B button into the jump control.

Add a new Event Trigger component to B and add two events: Pointer Up and Pointer

Down. Add a new entry to both then set MyGameManager as the value of both Object
fields.

Select the InputHandler.DidReleaseJump method for Pointer Up and choose
InputHandler.DidPressJump for the Pointer Down event.

Vil Event Trigger (Script) @ =

Pointer Up (BaseEventData) -

m InputHandler.DidRelease|ump
- MyGameMan:_©

Pointer Down (BaseEventData) -

m InputHandler.DidPressJump 3
- MyGameMan:_©

D+ -

[Add New Event Type |

The A button is important — it’s the attack button.

Expand ControlCanvas and its child Buttons. Select A and add a Button component it.

K

Set Transition to Sprite Swap, set button_a_normal as the value of Highlighted
Sprite and button_a_selected as the value of both Pressed Sprite and Disabled

Sprite.

© Inspector

VA | CIstatic «
Tag [untagged : | Layer| u ™
Prefab | Select | Revert | Apply |
» = Rect Transform @ = %
Canvas Renderer o
» "4 ¥ Image (Script) @ = =
v o« [+ Button (Script) @ = %
Interactable
Transition Sprite Swap 3
Target Graphic *s A (Image) [o]
Highlighted Sprite | [2lbutton_a_normal)
Pressed Sprite [zl button_a_selected)
Disabled Sprite Llbutton_a_selected e
Navigation | Automatic ™
[Visualize]
On Click ()
List is Empty
+ -—

Add an Event Trigger component and add a Pointer Down event. Add a new entry, set

MyGameManager as the event’s Object, and then apply
InputHandler.DidPressAttack to the Function field.

VEEl Event Trigger (Script) @ = %

I Pointer Down (BaseEventData)

Runtime Only

- MyGameMana_O|

|| InputHandler.DidPressAttack

[

Add New Event Type

That takes care of the attack and jump buttons. Up next is setting references for the

directional buttons.

Expand ControlCanvas and select DirectionPad in the Hierarchy.

Add an ActionDPad component to it and set Radius to 5. Add a new event to
OnValueChange and set MyGameManager as the Object and set
InputHandler.OnActionPadChangeDirection as its function.

K

Set the Size of Directional Sprites to 9 and drag the sprites from the Images \ JoyPad
folder to the list, setting them in the following order from Element O to Element 8:
dpad_center, dpad_up, dpad_upright, dpad_right, dpad_downright, dpad_down,
dpad_downleft, dpad_left, and dpad_upleft.

O mspector L]

¥ DirectionalPad | Cstatic «
Tag | Untagged ¢ | Layer| ul 2]
Prefab | Select | Revert | Apply |
» 2 Rect Transform @ =3 &
Canvas Renderer (]
» "4 ¥ Image (Script) o %
v = ¥ Action D Pad (Script) @ = %
Script -« ActionDPad [0}
Ikadius 1
¥ Dire

Element 0 [/ dpad_center

Element 1 [“ldpad_up
Element 2 [“ldpad_upright
Element 3 [Zldpad_right
Element 4 [2.dpad_downright
Element 5 [2\dpad_down

[2ldpad_downleft

O 0 0 OO OO 06 O

m InputHandler.OnActionPadChangeDirection 3

|- MyGameMai_O|

Select ControlCanvas and click Apply to save the prefab. Save the scene and run the
game. Select MyGameManager in the Hierarchy and turn Use UI on and off to toggle
between control modes.

©mspecor | a.|
¥ MyGameManager | [Istatic
Tag | Untagged ¢ | Layer| Default |
b .~ Transform @ = %
» o | Game Manager (Script) @ =
v = ¥ Input Handler (Script) @ ' %,
Script + InputHandler ©
Max Jump Duration 0.2 |
I Use UI v i

By keeping the Boolean variable Use Ul enabled, you’re allowing the InputHandler to
use the on-screen Ul as its input source. Otherwise, it would use the keyboard for input.

Make sure to uncheck this variable if you want to test the keyboard.

y ‘ HEALTH

2

-"'"-'—

”’ '\x\\ Y - \\

Where to go from here?

1.'}1

And there you have it! The Ul is pretty much complete — great job setting all that up.
You can see the hero and enemies’ health and hit damage values, and you’ve got a nifty

visual cue that the battle is done and you can go forward.

K

For today’s on-the-go player who needs a daily dose of robot-bashing pleasure, you
implemented on-screen controls.

In this chapter, you:

Learned all about Unity’s UI and its functionality.

Created a health bar for the hero and his foes.

Displayed a go sign to prompt the player to continue after they emerged victorious
from a battle event.

Satisfied the player’s need for data with an on-screen damage value display.

Added on-screen controls for the attack, jump and movement buttons.

Congratulations on a job well done! Pompadroid is looking pretty sharp. It’s premature
to declare “ship it”, but it’s close for mobile device deployment.

Up next, you’ll add power-ups, garbage cans, and big bad bosses to the game!

ig Bad Boss

PompaDroid is looking pretty good so far. In fact, it is nearly complete!

Think about PompaDroid for a moment. Players need to be entertained. Challenged.
Pushed to their limits. If they walk through the whole game — or level — without an
unfortunate, untimely death, they’ll tire of your game and move onto the next.

You, as the game designer, need to give players challenges to overcome. Double bonus
points if you can induce a little ire when they lose! :]

In this chapter, you’ll learn how to:
» Add a new, super-powerful antagonist, in this case, the mighty boss.

« Implement powerups, in this case, the POW300, a set of gloves that empower the
hero to defeat the boss.

» Place powerups around the map.

By now, you know your way around the game and Unity, and you won’t be doing
anything “new”, so this chapter should go pretty quickly!

h raywenderlich.com 389

The big bad boss

Meet the new boss. He’s larger than your standard-issue droids, as bosses often are (at
least in their own minds), and he’ll have a wicked mechanical arm that delivers
maximum damage to our pompadoured protagonist. Ouch!

He’s also got a pretty sweet hairdo. Makes you wonder if he’s related to the hero, right?

The boss will behave similarly to the robots: he’ll walk, attack, chase, and relentlessly
pursue the hero. Yet he will be different.

To make things hard on the player, he won’t feel pain or fall down. He’ll shrug off all
attacks he receives like a...boss!

7
@

His attacks will impart substantially more damage. Each blow from his mechanical arm
will knock the hero down. That mechanical arm is a force to be reckoned with!

+

K

Build the boss

Import Boss.unitypackage from the UnityPackages folder. Note that it contains all
the assets you need, including a semi-complete EnemyBoss prefab.

[JoX) Import Unity Package
Boss-old
v [&5 Animation
v [&iBoss
(¥ [| boss_anim_controller.controller {NEW]|
¥ & boss_attack_anim.anim (New |
(¥ ¥ boss_idle_anim.anim {NEwW |
(¥ ¥ boss_knockout_anim.anim (NEwW |
(¥ & boss_walk_anim.anim {NEW]
v [&images
v ([& GameHUD
(¥ il ui_hp_boss_thumb.png (NEW |
v [& Sprites
v [GiBoss
4 @boss_amclgoo.png {NEW)
[+ || boss_attack_01.png (New |
[|lmi|boss_attack_02.png (NEW |
[| boss_attack_03.png CHEW |
@boss-attack_m.png {NEW]
[+ | boss_idle_00.png NewW |
(¥ |l boss_idle_01.png W |
4 @boss_idle_oz.png {NEW]
[/ | boss_idle_03.png (e |
(¥ |imi|boss_idle_04.png (NEW |
(¥ | boss_knockout_00.png (NEW |
siboss_knockout_01.png NEW |
[/ lisi|boss_knockout_02.png (NeW |
[|imilboss_knockout_03.png (NEW |
4 @boss_walk_OOApng {NEW |
[+ |l boss_walk_01.png (New |
(¥ |imilboss_walk_02.png (NEW |
[+ |isiboss_walk_03.png MW |
il boss_walk_04.png NEW |
(¥ | boss_walk_05.png (NEw |
v [Gl Prefabs
4 EnemyBoss.prefab {NEW]

As it is for the hero and droids, the Actor class will handle damage for the boss.
Modifying it is the first order of business.

Open Actor.cs and add the following variable below the class declaration:

protected bool canFlinch = true;

This Boolean determines whether the corresponding Actor flinches when it takes
damage. It defaults to true for all instances of the Actor class.

Find the TakeDamage method and replace the following lines:

} else {
baseAnim.SetTrigger("IsHurt");
b

With these lines:

} else if (canFlinch) {
baseAnim.SetTrigger("IsHurt");
b

You’re adding a condition so that the hurt animation only plays when canFlinch is set
to true.

The Actor script is complete for now. Save it, create a new C# script in the Scripts
folder and name it Boss.cs.

Open it and replace its contents with the following:

using System.Collections;
using UnityEngine;

//1

public class Boss : Enemy {

//2

protected override void Start() {
base.Start();
canFlinch = false;

¥

//3
public override void TakeDamage(float value, Vector3 hitVector, bool
knockdown = false) {
base.TakeDamage(value,hitVector, false);
¥
b

Here you’re setting up the Boss class.

1. Boss, just like Robot, is based on the Enemy class so it inherits the ability to use the
EnemyAI script.

K

2. Start overrides the Start method from the base class by setting canFlinch to false.

3. TakeDamage overrides the base class while setting knockdown to false. It prevents the
hero from knocking down the boss.

That should frustrate the player! Save the script and open GameManager.cs. Next up
is creating an instance of the boss when the level demands it.

Add the following below public GameObject robotPrefab:
public GameObject bossPrefab;

This variable is a reference to the boss prefab.

Next, in the SpawnEnemy method of the same class, replace the following line:
GameObject enemyObj = Instantiate(robotPrefab);

With this conditional:

GameObject enemyObj;
if (data.type == EnemyType.Boss) {
enemyObj = Instantiate(bossPrefab);
T else {
enemyObj = Instantiate(robotPrefab);

This if instantiates a boss when the data parameter requires an EnemyType.Boss.
Otherwise, it generates a normal droid.

Save GameManager.cs and return to the editor to assemble the boss prefab.

Open the Game scene and drag the EnemyBoss prefab from the Assets / Prefabs folder
into the scene.

= Hierarchy |
l Create ¥ | (arall
v & Game*
» MyHero
» MyGameManager
» UlCanvas
EventSystem
» ControlCanvas

il

EnemyBoss
ShadowCharacter

¥ BossAnimator
EnemyBody
AttackCollider

HeroDetector

Change the layer of EnemyBoss to Enemy. Select Yes, change children when
prompted.

K

ﬂval

|| Static ¥ l

© Inspector]
' EnemyBoss
Tag | Untagged $ | Laye* Enemy A]I
Prefab | Select | Revert | Apply |

Add a Boss component to EnemyBoss. Move it up in the Inspector by right-clicking and
selecting Move Up. For convenience, make it the first element below the Transform of

EnemyBoss.

© Inspector |
e

=
]

100

= i

Ao

b % Rigidbody

e

» ¥ Nav Mesh Agent

@ = &

v « ¥ Boss (Script)
Script
Base Anim
Body
Shadow Sprite
Base Sprite
Speed
Is Grounded
Max Life
Current Life

Reset

Edit Script

@ 3 &

Remove Component

Copy Component

Is Alive
» Normal Attack

Rearranging components will trigger a prompt about breaking the prefab instance.

Select Continue — you’ll save the prefab later.

Break Prefab Instance

sure you wish to continue?

<

Cancel

This action will break the prefab instance. Are you

= Contiwe |

Note: In most cases, and PompaDroid is no exception, rearranging components

has no bearing on how the code runs.

Add an EnemyAI and a Walker component to EnemyBoss. Move the components to

the top of the GameObiject.

©inspector LA
& EnemyBoss | [Istatic «

Tag [Untagged #] Layer[Friendly]
Prefab | Select | Revert | Apply |
¥ .~ Transform @ = %=
Position X 3517 YO]z|—57 |
Rotation x/0 'y/o 1zlo]
Scale X1 1Y |1 |z [1 |
» = ¥ Boss (Script) d &
» o« ¥ Enemy Al (Script) -
b o ¥ Walker (Script) 8

Select the BossAnimator child of EnemyBoss in the Hierarchy, and add an
ActorCallback component to it. Point its Actor field to EnemyBoss.

™ BossAnimator | [static
Tag | Untagged ¢ | Layer| Default N
Prefab | Select | Revert | Apply |
¥ .~ Transform @ = %
Position X 0 Y 0 'z 0 |
Rotation X 0 Y 0 'z 0 |
Scale X1 [¥|1 |z |1 |
» 35 ¥ Animator . ¥,
¥ .« Actor Callback (Script) -
Script « ActorCallback o]
Actor « EnemyBoss (Boss) ©

Select the AttackCollider child of BossAnimator, and add a HitForwarder component

Point its Actor field to EnemyBoss and its Trigger Collider to its Box Collider. Set its
layer to Detector.

© mspector [

' ¥ AttackCollider [|Static v |
Tag [Untagged 8 Il.ayerl Detector s I
Prefab | Select | Revert | Apply |

¥ .~ Transform e
Position X 0 YO0 'Z0 |
Rotation X 0 'Y 0 ‘20 |
Scale X1 1Y |1 1z |1 |

» i || Box Collider 3%

¥ . Hit Forwarder (Script) -
Script
Actor
Trigger Collider |\ AttackCollider (Bo> ©

Select the HeroDetector child of EnemyBoss and add a HeroDetector component to it.
Set its layer to Detector as well.

©nspector L]
¥ HeroDetector E] Static ¥
Tag [Untagged] Layerl Detector I
Prefab | Select | Revert | Apply
» .~ Transform d &
» () ¥ Sphere Collider = %
Vv « ¥ Hero Detector (Script) -
Script « HeroDetector (o]
Hero Is Nearby]

Next, select EnemyBoss in the Hierarchy and set the Walker component’s Nav Mesh
Agent to the Nav Mesh Agent component on the same GameObject.

Point the Hero Detector field of Enemy Al to the HeroDetector child of EnemyBoss.
Set Attack Reach Min to 1, Attack Reach Max to 3, and Personal Space to 1.5 in the
Enemy AI component.

Beat ’Em Up Game Starter Kit Chapter 10: Big Bad Boss and Powerups

© Inspector
[+ 'EnemyBoss

| [Istatic

Set the Base Anim variable to the BossAnimator Animator.

Adjust Body to the RigidBody on the same GameObject. Set Shadow Sprite to
ShadowCharacter and modify BaseSprite to EnemyBody.

h raywenderlich.com 397

@ EnemyBoss | [static «
Tag | Untagged ¢ | Layer| Friendly ;|
Prefab | Select [Revert | Apply |
¥ .~ Transform [5! %
Position X (3517 Y0 2057 |
Rotation X 0 'Y O 'Z 0 |
Scale X (1 1¥[1 |z [1 |
v = [¥Boss (Script) @ 3! %
Script + Boss ©
Base Anim |35 BossAnimator (Animator) = ©
Body A EnemyBoss (Rigidbody) @ ©
Shadow Sprite [z1ShadowCharacter (Sprite R, ©
Base Sprite [zl EnemyBody (Sprite Render¢ ©
Speed 2]
| 1lc Crnundad [

Drag the HitParticle prefab located in Assets / Prefabs to the Hit Spark Prefab field.

Set Actor Thumbnail to the ui_hp_boss_thumb sprite. Set Hit Value Prefab to
HitValue located in Assets / Prefabs.

Point AI to the EnemyAI component in EnemyBoss and adjust Walker to the Walker
component in the same GameObject.

v « ¥ Boss (Script) @ 3 %
Script + Boss (o]
Base Anim 3% BossAnimator (Animator) = ©
Body | A EnemyBoss (Rigidbody) @ ©
Shadow Sprite [z'ShadowCharacter (Sprite R @
Base Sprite |[z1EnemyBody (Sprite Render¢ ©
Speed 2
Is Grounded [J
Max Life 1250
Current Life 1250
Is Alive 4

P Normal Attack
Is Knocked Out [J

[Hit Spark Prefab v HitParticle E|
Life Bar None (Life Bar) o]
Actor Thumbnail lui_hp_boss_thumb G
Hit Value Prefab i HitValue | ¢
Ai |« EnemyBoss (EnemyAl) | €
Walker |« EnemyBoss (Walker) G

Stop Movement When [_|

Set Speed to 2 and adjust both MaxLife and CurrentLife to 250. Set Normal Attack’s
Attack Damage to 20, check Knockdown and uncheck Stop Movement When Hit.

v « ¥ Boss (Script) @ =
Script + Boss (o]
Base Anim |35 BossAnimator (Animator)]
Body | A EnemyBoss (Rigidbody))
Shadow Sprite @ ShadowCharacter (Sprite Renderer) = ©
Base Sprite I EnemyBody (Sprite Renderer) o}

|Speed 2]
Is Grounded]
Max Life 1250
Current Life 250
Is Alive
¥ Normal Attack
Attack Damage 20
Force 0
Knockdown g
Is Knocked Out -
Hit Spark Prefab \# HitParticle o]
Life Bar None (Life Bar) [0}
Actor Thumbnail |Elui_hp_boss_thumb ‘e
Hit Value Prefab |/ HitValue e
Ai |« EnemyBoss (EnemyAl))
Walker | « EnemyBoss (Walker) | 0
IStop Movement When Hi| | |

You just finished the boss. Like a boss, no less.

Select Apply at the top-right of the Inspector to save the prefab. Delete the
EnemyBoss GameObject in the Hierarchy.

© Inspector
[+ [EnemyBoss | [static ~
Tag | Untagged 4| Layer| Friendly &
Prefab | Select | Revert Apply

Select MyGameManager in the Hierarchy and set the Boss Prefab variable as
EnemyBoss in the Prefabs folder.

Beat ’Em Up Game Starter Kit Chapter 10: Big Bad Boss and Powerups

Select the LevellData asset in the LevelData folder. In the Inspector, expand Battle
Data and its Enemies list.

Duplicate the last item in Enemies by right-clicking then selecting Duplicate Array
Element. Set its Type to Boss and leave the other settings as-is.

Repeat those steps to add a boss to each level. Maybe two if you’re feeling punchy.
Save the scene and the project.

And that, my dear reader, is how you spawn a boss the end of the first level.

u raywenderlich.com 400

Thrash some droids. Destroy them! When you reach the end, you’ll meet the new boss.

Great job! The boss spawns, ready to fight! But wow. He’s badass! Poor little
pompadoured protagonist doesn’t stand a chance.

Powerups: the boss’ worst nightmare

But wait. This is your game. You’re the original boss of this game. Look at your fingers
for a moment. Look at them! Those very fingers control life and death in the world of
PompaDroid. You have the power to give the hero something to work with.

Besides, you can’t just implement a powerful boss and not give the player some way to
defeat it. Players like to be challenged, but they deplore impossible challenges. They
have to have at least some hope of prevailing in order for a boss battle to be “fun”.

Players love stumbling across loot and powerups they can use to crush enemies in a
more grandiose fashion. Powerups tend to have a few qualities: enhance the player’s
powers, limited duration, and some kind of trade off in abilities.

Gloves are a hero’s best friend

I’ve set you up to implement the Punch-a-Tron Operational Work Gloves 300, or
POW300 for short!

The POW300 grants super-human strength to the hero, but he can’t run or jump while
wearing them. They are too bulky!

Another downside? The gloves are made cheaply and simply fall apart after a few hits.

The last caveat is that they fall off when the hero takes damage.

If the player wants to take them off, they can press the jump button.

In spite its limitations, this powerup gives the hero a decisive advantage over enemies.
You’ll stash POW300s in garbage cans to make them available to the player.

iy
& s
1&11___-\&_—

Setting up the gloves

When you equip them, the gloves sprite draw on top of the hero sprite. This is similar to
how the robot sprite works: multiple layers of sprites create the illusion of a single,
solid asset.

Beat ’Em Up Game Starter Kit Chapter 10: Big Bad Boss and Powerups

Import the POW300.unitypackage from the UnityPackages folder. In here, you’ll find
new and updated animation clips suffixed with "_powerup", and an incomplete POW300
prefab.

[JoN | Import Unity Package

POW3000-final

The animation clips reference a WeaponSprite SpriteRenderer parameter. This
SpriteRenderer is responsible for rendering the POW?300 assets on top of the hero’s
sprite.

@ Animation

You’ll need a new SpriteRenderer before you can add the animator for the POW300
gloves.

In the Hierarchy, select HeroAnimator under MyHero, and add a new 2D Object \
Sprite to it. Name it WeaponSprite then set Transform position and rotation to (X:0,
Y: 0.018, Z:-0.028) and (X:30, Y:0, Z:0),respectively.

h raywenderlich.com 404

= Hierarchy © Inspector
| Create - | (oA 4 |WeaponSprite | [Static ¥
: Q e = Tag | U ed + i N
¥ MyHero g | Untagg + | Layer| Friendly — +
¥ HeroAnimator ¥ .~ Transform @ =
HeroSprite Position X 0 1Y 0018 | Z -0.028
i Rotation X 30 Y0 zo
L Scale X [1 Y |1 z1
ShadowCharacter
» MyGameManager v |51 [Sprite Renderer @ = %
» UlCanvas Sprite [None (Sprite) o
EventSystem Color [| 2
WorldCanvas Flip Ox Oy
» ControlCanvas Material | @ Sprites-Default]
Draw Mode [simple ™
Sorting Layer | Default ™
Order in Layer 0 |
Mask Interaction [None N
Sprites-Default @ =
[Shader | Sprites/Default -

Select the HeroAnimator GameObject and open the Animator Window. You’ll need
to add a new pickup state in the statemachine.

Drag the hero_pickup_anim clip from Animation \ Hero into the Animator view and

rename it pickup.

Base Layer

Auto Live Link

ssets » Animation » Hero

@ hero_attack3_anim
d hero_attack3_anim_powerup
4 hero_getup_anim

@ hero_hurt_anim

@ hero_idle_anim

d hero_idle_anim_powerup

@ hero_jump_attack
id hero_jump_fall

id hero_jump_land
id hero_jump_rise

p T

Add a new Trigger Event parameter named PickupPowerup.

l Layers H Parameters I
(arName

Speed

IsRunning

-
+

\J/

IsGrounded
Jump
EvaluatedChain
CurrentChain
IsAlive

IsHurt

Knockdown

OOOQEEODDE

CetUp

Add a transition from idle to pickup. Uncheck Has Exit Time and Fixed
Transition Duration to 0, and its condition as PickupPowerup.

Duration. Set

s idle -> pickup

Auto Live Link

@ %

W= 1 AnimatorTransitionBase

Transitions

Solo Mute

R

® |

| %

idle -> pickup

V¥ Settings
Exit Time

IHas Exit Time I

0.5

Fixed Duration

Transition Offset

Transition Duratior|
0

.
0

Interruption Source
Ordered Interruptic
@):00

0:05 g

None

cOI’IaItIOnS

— [PickupPowerup |~

Add a transition from pickup to idle. Keep Has Exit Time checked. Set Exit Time to 1.

Uncheck Fixed Duration and set Transition Duration to 0.

K

This will transition the state machine to an idle state when the pickup animation
completes.

Auto Live Link w= pickup -> idle m 2,

s 1 AnimatorTransitionBase

Transitions Solo Mute

- | | %
W= pickup -> idle

I Has Exit Time ﬂl
¥ Settings

Exit Time 1
Fixed Duration [|
Transition Duratior 0
Transition Offset 0
nterruption Source None
Ordered Interrupticv/

Conditions
List is Empty

+ -

Replace the animation clip of the idle animation state. Select the idle state, and in the
Inspector, replace Motion with the hero_idle_anim_powerup animation clip.

© Inspector
Auto Live Link 0 lidle @ Ll

T ol

Motion -
Speed 1

Multiplier [- [] Parameter
Normalized Time [] Parameter
Mirror O [Parameter
Cycle Offset 0 ' [_] Parameter
Foot IK -
Write Defaults 4
Transitions

g
=]
=
c
7

— idle -> walk

idle -> run

idle -> jump_rise

idle -> attackl

idle -> run_attack

idle -> attack2

idle -> attack3

O0oooooo

[DCIDDDDDD

— idle -> pickup

[Add Behaviour]

Our hero needs to wear the gloves while walking.

K

Select the walk state, and replace Motion with hero_walk_anim_powerup animation
clip.

© Inspector

Auto Live Link

¢ [walk ﬁ 1 #v
Tag | |

I Motion W hero_walk_anim_powerup]
Speed T
Multiplier
Normalized Time
Mirror
Cycle Offset
Foot IK
Write Defaults
Transitions

- [_] Parameter
] Parameter
] Parameter

' [_] Parameter

T

R Oe|O

o
=
=

te

= walk -> idle
= walk -> run

— walk -> jump_rise

OO0 DO0O|g
T 0000

— walk -> attackl

And he definitely needs to wear them while throwing a punch.

Open the attack substate machine and set the Motion field of these states: attackl,
attack2 and attack3 as the hero_attackl_anim_powerup,
hero_attack2_anim_powerup, and hero_attack3_anim_powerup clips respectively.

© Inspector © Inspector © Inspector
o] [attackl a3 o [attack2 % o [attacks @ = #
Tag | | Tag | | Tag | |
I Motion | hero_attackl_anim_powerup I_Ol I Motion Fhem_attackz_anim_puwerup]ﬂ I Motion Fhem_attackS_anim_puwerup]_Ol
Speed 1 | Speed 1 | Speed 1 |
Multiplier - [] parameter Multiplier - [parameter Multiplier - [parameter
Normalized Time] Parameter Normalized Time ("] Parameter Normalized Time ("] Parameter
Mirror (m} (] Parameter Mirror - () Parameter Mirror - (] Parameter
Cycle Offset 0 - Cycle Offset 0 - Cycle Offset 0 -
Foot IK - Foot IK O Foot IK -
Write Defaults 4 Write Defaults ¥4 Write Defaults ¥4
Transiti Solo Mute Transiti Solo Mute T iti Solo Mute
— attackl -> Exit (m | — attack2 -> Exit & — attack3 -> Exit (™~
= = =
[Add Behaviour] [Add Behaviour] [Add Behaviour |

The hero’s animation is complete. So run the game. Does he always have the gloves on

now? Looks like it. Your work is not done here.

€ Game

WA, Sy,
R R,
R R
R R
R S
R R
R RN

Select the WeaponSprite child of HeroAnimator and disable the SpriteRenderer.
Fixed!

[@inspector L]
¥ |WeaponSprite | [static ¥
Tag | Untagged ¢ | Layer| Friendly n
b .~ Transform e
v][] Sprite Renderer @ = %
Sprite |None (Sprite) | o
Color [| 2
Flip Ox Oy
Material | @ Sprites-Default)
Draw Mode | Simple a
Sorting Layer | Default sl
Order in Layer 0 |
Mask Interaction [None ™
Sprites-Default *,
S Shader | Sprites/Default v

But your work continues. You added new sprites and animations, so naturally, you’ll
need to spend some time coding.

Create a new C# script named Powerup.cs in the Scripts folder. Open the script and
replace its contents with this code:

using System.Collections;
using UnityEngine;

K

public class Powerup : MonoBehaviour {
//1
public GameObject rootObject;
public GameObject shadowSprite;
public Rigidbody body;
public int uses = 20;
public Hero user;
public SpriteRenderer sprite;

//2

public AttackData attackDatal;
public AttackData attackDataZ2;
public AttackData attackData3;

//3
protected virtual void Update() {
Vector3 spritePos = shadowSprite.transform.position;
spritePos.y = 0;
shadowSprite.transform.position = spritePos;
b
b

The Powerup script will be used on all instances of the POW300 gloves.

1. Here are your references to the Powerup GameObject root, its shadow, its physical
rigidBody and the current user who wields it. Also, the number of times the
powerup can be used, with a default value of 20.

2. Here are your replacement AttackData methods. When the hero equips gloves, the
game will use these AttackData values to calculate damage.

3. Here you have an overriding Update to the sprite’s shadow position, similar to the
Actor’s shadow sprite.

Next, add the following methods:

//1
public void Use() {
uses——;

if (uses <= 0) {
StartCoroutine(DestroyAnimation());

}

//2

protected virtual void SetOpacity(float value) {
Color color = sprite.color;
color.a = value;
sprite.color = color;

//3
private IEnumerator DestroyAnimation(int amount = 5) {
int i = amount;

K

while (i > 0) {
SetOpacity(0.5f);
yield return new WaitForSeconds(0.2f);
SetOpacity(1.0f);
yield return new WaitForSeconds(0.2f);
1—;

¥

Destroy(rootObject);

//4
public bool CanEquip() {
return uses > 0;

¥

1. Use subtracts one from the uses variable. When it reaches zero, it starts the
DestroyAnimation coroutine.

2. SetOpacity is a helper method that sets the alpha value of the SpriteRenderer’s
Color variable to the value passed as its parameter.

3. DestroyAnimation is a coroutine that flickers the powerup object when it’s almost
spent by flickering the alpha value of the glove sprite numerous times before
destroying its GameObject.

4. CanEquip determines whether the powerup can be used by the hero by checking if
the powerup has remaining uses.

Save the script and open the Hero. cs script. Next, you’ll let the hero pick up the
powerup.

Add these variables just above Start():

//1

bool isPickingUpAnim;

bool weaponDropPressed = false;
public bool hasWeapon;

//2
public bool canJump = true;

//3

public SpriteRenderer powerupSprite;
public Powerup nearbyPowerup;

public Powerup currentPowerup;
public GameObject powerupRoot;

1. weaponDropPressed stores whether the player pressed jump, which forces the hero
to drop any equipped weapons. isPickingUpAnim is true when the hero’s animator is
playing the pickup animation. Lastly, hasWeapon stores if the hero has equipped a
weapon.

2. canJump flags whether the hero can jump or not.

3. These are references for the powerup’s behavior: First is a reference to the
powerupSprite SpriteRenderer, then you have references to the Powerup class you
created earlier — these track equipped currentPowerup variables and any (aptly
named) nearbyPowerup, and lastly, a reference to the powerup’s root object.

Next, add the powerup equipping methods to the bottom of the class:

//1
public void PickupWeapon(Powerup powerup) {
baseAnim.SetTrigger ("PickupPowerup");

public void DidPickupWeapon() {

//2

if (nearbyPowerup !'= null && nearbyPowerup.CanEquip()) {
Powerup powerup = nearbyPowerup;
hasWeapon = true;
currentPowerup = powerup;
nearbyPowerup = null;
powerupRoot = currentPowerup.rootObject;
powerup.user = this;
//3
currentPowerup.body.velocity = Vector3.zero;
powerupRoot.SetActive (false);
Walk ();

//4
powerupSprite.enabled = true;
canRun = false;
canJump = false;
b
b

These methods allow the hero to use powerups.
1. PickupWeapon triggers the hero’s pick-up animation.

2. DidPickupWeapon picks up any powerups that are near the hero. It checks if a
powerup is nearby. If true, it sets the references and values necessary for equipping
the powerup.

3. Prevents the rigidbody of the powerup from moving and hides the powerup in the
scene by setting powerupRoot.SetActive(false). Constrains the hero’s motion to
walking only by calling the walk() method.

4. Enables the glove’s powerupSprite SpriteRenderer. Sets canRun and canJump flags to
false, further preventing the hero from running or jumping.

Add these methods to allow the player to unequip the powerup:

public void DropWeapon() {
//1
powerupRoot.SetActive(true);
powerupRoot.transform.position = transform.position + Vector3.up;
currentPowerup.body.AddForce(Vector3.up *x 100);

//2

powerupRoot = null;
currentPowerup.user = null;
currentPowerup = null;
nearbyPowerup = null;

//3

powerupSprite.enabled = false;
canRun = true;

hasWeapon = false;

canJump = true;

1. Enables the powerupRoot object again. Then AddForce causes the hero to toss the
glove sprite upward.

2. Resets the member references to the powerup.

3. Disables the powerupSprite SpriteRenderer to hide the glove sprites on the hero.
Restores the hero’s canRun and canJump and sets hasWeapon to false.

You are getting close to finishing these gloves! But the hero needs to be able to tell
when a powerup is nearby. Add these methods to the script:

//1
void OnTriggerEnter(Collider collider) {
if (collider.gameObject.layer == LayerMask.NameToLayer("Powerup")) {
Powerup powerup = collider.gameObject.GetComponent<Powerup>();
if (powerup != null) {
nearbyPowerup = powerup;

}
by

//2
void OnTriggerExit(Collider collider) {
if (collider.gameObject.layer == LayerMask.NameToLayer("Powerup")) {
Powerup powerup = collider.gameObject.GetComponent<Powerup>();
if (powerup == nearbyPowerup) {
nearbyPowerup = null;

¥
iy

These OnTrigger methods are called when a corresponding trigger collider overlaps the
Hero’s collider.

K

1.

onTriggerEnter checks if a colliding trigger collider is a member of the powerup
layer. If it is, it fetches the Powerup component by using GetComponent<Powerup>().
If it finds a Powerup component, the code stores its reference as the nearbyPowerup
variable.

The OnTriggerExit method does the opposite of the previous method: If it finds a
powerup, and it is the same as the nearbyPowerup variable, it disregards it by setting
nearbyPowerup to null.

Note: You’ll add the Powerup layer to the game’s layers later.

Next, you’ll update the HitActor method to enable the hero to use the powerup’s
AttackData when he’s equipped the gloves.

Change the first three if statements in HitActor() from this:

if (baseAnim.GetCurrentAnimatorStateInfo(@).IsName("attackl")) {
AnalyzeNormalAttack (normalAttack, 2, actor, hitPoint, hitVector);

} else if (baseAnim.GetCurrentAnimatorStateInfo(@).IsName("attack2")) {
AnalyzeNormalAttack (normalAttack2, 3, actor, hitPoint, hitVector);

} else if (baseAnim.GetCurrentAnimatorStateInfo(@).IsName("attack3")) {
AnalyzeNormalAttack (normalAttack3, 1, actor, hitPoint, hitVector);

To this:

if (baseAnim.GetCurrentAnimatorStateInfo(0).IsName("attackl")) {

//1

AttackData attackData = hasWeapon ? currentPowerup.attackDatal :
normalAttack;

//2

AnalyzeNormalAttack (attackData, 2, actor, hitPoint, hitVector);

//3

if (hasWeapon) {

currentPowerup.Use();

Jy
} else if (baseAnim.GetCurrentAnimatorStateInfo(@).IsName("attack2")) {
AttackData attackData = hasWeapon ? currentPowerup.attackData2 :
normalAttack2;
AnalyzeNormalAttack (attackData, 3, actor, hitPoint, hitVector);
if (hasWeapon) {
currentPowerup.Use();

¥

} else if (baseAnim.GetCurrentAnimatorStateInfo(@).IsName("attack3")) {
AttackData attackData = hasWeapon ? currentPowerup.attackData3 :
normalAttack3;
AnalyzeNormalAttack (attackData, 1, actor, hitPoint, hitVector);
if (hasWeapon) {
currentPowerup.Use();

¥

K

}

This block of code might look complicated at first, but its logic is quite simple. Take a
look at the first if condition:

1. Which AttackData to use is determined by a ternary operator. If the hasweapon flag
is true, the attackDatal of the powerup is used to calculate damage. Otherwise, the
game sticks with the normalAttack.

2. This line handles the damage like before.

3. When a powerup weapon is equipped, the code subtracts its uses by calling
currentPowerup.Use().

The same logic applies to attack2 and attack3 states, but they use different AttackData
parameters.

Find TakeDamage () and add the following lines above the base.TakeDamage line:
if (hasWeapon) {
DropWeapon() ;
This forces the hero to drop his weapon when he takes a smack across the kisser.
The Update method needs a few changes too.

Add the following line in Update(), right below this line isHurtAnim =
baseAnim.GetCurrentAnimatorStateInfo(@).IsName("hurt").

isPickingUpAnim =
baseAnim.GetCurrentAnimatorStateInfo(@).IsName("pickup");

That updates the isPickingUpAnim Boolean when the pickup animation plays.
Find this if condition:

if (attack && Time.time >= lastAttackTime + attackLimit && !isKnockedOut)
{

And replace it with:

if (attack && Time.time >= lastAttackTime + attackLimit && !isKnockedOut
&& !'isPickingUpAnim) {

You’re preventing the hero from attacking whilst picking up a powerup.

K

Find this jump if condition:

if (jump && !isKnockedOut &&

'isJumpLandAnim && !'isAttackingAnim &&

(isGrounded || (isJumpingAnim && Time.time < lastJumpTime +
jumpDuration)))

And replace with:

if (canJump && jump && !isKnockedOut &&
!isJumpLandAnim && !'isAttackingAnim &&
'isPickingUpAnim && !'weaponDropPressed &&
(isGrounded || (isJumpingAnim && Time.time < lastJumpTime +
jumpDuration)))

These extra conditions prevent the hero from jumping when canJump is false and when
he is picking up a powerup.

Insert the code below at the bottom of the Update method right above if(attack &&
Time.time...

if (attack && Time.time >= lastAttackTime + attackLimit &S& isGrounded
&& !'isPickingUpAnim) {
if (nearbyPowerup '= null && nearbyPowerup.CanEquip ()) {
lastAttackTime = Time.time;
Stop ();
y PickupWeapon (nearbyPowerup);
b

With this, you’ve made it so the hero will pick up a nearby weapon rather than attack
when the player presses the attack button.

While still in the Update method, insert this above if (canJump && jump. ..

if (jump && hasWeapon) {
weaponDropPressed = true;
DropWeapon() ;

if (weaponDropPressed && !'jump) {
weaponDropPressed = false;

Here you let the hero drop the powerup when the player presses jump.
Great! Your Hero class is all set for now. Save it and open HeroCallback. cs.
Add the following method:

public void DidPickup() {
hero.DidPickupWeapon ();
}

K

Here you call hero.DidPickupWeapon() when the pickup animation is done.

You’re done in here for now. Save the script and open Powerup.cs.

Insert the following in the Use method above StartCoroutine(DestroyAnimation());
user.DropWeapon();

This tells the user to drop its current weapon when uses reaches 0.

Okay! That’s it for scripting. For now. Save it and head back into Unity.

Remember that change you needed to make to the layers of the POW300 prefab?

Open Tags & Layers in the Inspector by selecting Edit \ Project Settings \ Tags &
Layers in the top menu. Add a new layer named Powerup.

© Inspector I o =
\J Tags & Layers il
> Tags
» Sorting Layers
V¥ Layers

Builtin Layer O Default

Builtin Layer 1 TransparentFX

Builtin Layer 2 Ignore Raycast

Builtin Layer 3

Builtin Layer 4 Water

Builtin Layer 5 Ul

Builtin Layer 6

Builtin Layer 7

User Layer 8 Friendly

User Layer 9 Enemy

User Layer 10 Detector

User Layer 11 Wwall

User Layer 12 PlayerBlocker

|User Layer 13 Poweru

Now onto the physics collisions for your shiny new layer.

Select Edit \ Project Settings \ Physics in the Top Menu to open the Physics Manager
in the Inspector. In the Layer Collision Matrix, uncheck all collisions for Powerup
except for Friendly and Detector.

nJamogd

o

Default| |
TransparentFX |
Ignore Raycast[|
Water ||

uiJ

Friendly [+
Enemy [_|
Detector [+

Wall []
PlayerBlocker [
Powerup [_|

Now drag the POW300 prefab into the scene. Set its position to (X:15, Y:0, Z:0) to
position the POW300 in front of the hero.

== | © Inspector o=
; [POW300 [static
Tag [Untagged +] Layer| Detector J
Prefab | Select [Revert [Apply]
¥ .~ Transform o,
Position X 15 Yo zo
Rotation X 0 Yo zo
Scale X1 Y (1 zZ1
» i ¥ Box Collider

> aidbods

088
mmm
55

[Add Component]

Set the Layer of the POW300 GameObject to Friendly. If prompted, choose No, this
object only.

© Inspector | &=
¥ POW300 [Istatic «
Tag | Untagged + ILayer[Friendly :)
Prefab | Select [Revert | Apply
¥ .~ Transform -
Position X 15 ‘Yo 'z o |
Rotation X 0 ‘Yo 'z o |
Scale X |1 1Y |1 1z[1 |
» i ¥ Box Collider o %,
» % Rigidbody o
[Add Component]

Next, select the PowerupCollector child of POW300. Set its layer to Powerup, and add
a Powerup component to this GameObiject.

K

Set Root Object to POW300, and Shadow Sprite to ShadowWeapon. Then set Body
to POW300, and Sprite to PowerupSprite.

Set the AttackData values for the powerup like so:

o Attack Data 1: Damage 10, Force 50 and Knockdown disabled.
o Attack Data 2: Damage 20, Force 100 and Knockdown disabled.
» Attack Data 3: Damage 30, Force 0 and Knockdown enabled.

With that, you’re done with the POW300 prefab! That took a bit of sweat, but you got to
build on top of work you’ve already done. It’s a great place to be. Feels pretty good,
right?

Beat ’Em Up Game Starter Kit Chapter 10: Big Bad Boss and Powerups

Next, select MyHero and adjust its Hero component. Set Powerup Sprite from the
Hero component as the WeaponSprite child of HeroAnimator.

u raywenderlich.com 420

Has Weapon -

Can Jump 4

Powerup Sprite ﬁlWeaponSprite (Sprite Renderer) Gll
‘Wowerup ‘None (F-’owerup) | ©
Current Powerup ‘None (Powerup))
Powerup Root ‘None (Game Object) |0

Save the scene and the project. PLAY THE GAME. Play it!

Walk right up to that POW300. Press that attack button. Watch as the hero kneels down
and picks it up.

HEARLTH

= — ﬁ.‘)a —

Go find some poor droid and lay it out. Hehehehe.

s
@.

Try jumping or taking a hit. Per your design, the hero drops the gloves.

K

HERLTH

—

Okay, pick them back up and keep punching droids. Once all the uses are spent, the
fancy gloves disappear.

I

Nice going. You took control of the game and gave the hero something to work with
when that nasty boss shows up.

But who leaves gloves like that just laying out in the open? Seems like a lot of bosses
would get punched if they were so readily available. :]
One robot’s trash is another hero’s treasure

Trash cans will serve as the storage vessels for the gloves. They’re cheap, durable and
discrete.

Discrete? Huh?

How often do you go digging through trash cans? Hopefully never. But admit it: You

K

would dig through trash to get your hands on gloves like these!

&‘&\\\\ v

In PompaDroid, trash cans have multiple purposes: blocking movement and serving as

j\\\\‘ﬁ

w‘*‘

tﬂ\"tx---n

Import TrashCan.unitypackage from the UnityPackages folder. It contains a semi-
complete prefab for trash cans and the sprites used to create them.

[oN) Import Unity Package
TrashCan
v [&3 Images
v [&3 Sprites
v [G Misc
[== shadow._trashcan.png {NEW]
(¥ |l trashcan_hit_left.png [NEwW]
¥/ limi|trashcan_hit_right.png [NEW|
(/s trashcan_left.png [NewW]
[|mitrashcan_right.png NEW |
v [&5 prefabs
(¥ 4 TrashCan.prefab NEW |
Import

The trash can sprite is split into two sprites that serves as the left and right sides. You’ll
use them to accommodate layering needs when actors are near the garbage can.

When another sprite, such as a hero, approaches the trash can from the left, the sprite
should appear behind the trash can. When it approaches from the right, the sprite
should appear in front of the trash can.

z)

A

b A
*.*hﬁ.\-.----. \\:h

- e Fi

You’ll achieve this effect by positioning the trash can sprites at different distances from
the camera. They will, however, appear as a single sprite.

Your TrashCan prefab is configured accordingly. It also has a NavMeshObstacle
component attached to it so the enemy’s Al can pathfind around the trash cans.

[Omspecor e
@ [TrashCan | M static
Tag | Untagged + | Layer| wall s
» ~ Transform @ = %
b iy (¥ Box Collider @ 5 %
//|s Nav Mesh Obstacle =
Shape [Box
Center X0 Y (1.25 Z0.75
Size X 2.7 Y |[2.5 Z|1.5
Carve ¥4
Move Threshold 0

Time To Stationary 0.5
Carve Only Stationary [|

The prefab needs a component that spawns a POW300 when the trash can is hit.

Create a new C# script called Container.cs in the Scripts folder. Replace its contents
with the following:

using UnityEngine;

public class Container : MonoBehaviour {
//1
bool isOpen;
public GameObject prizePrefab;
public Transform spawnPoint;

//2

public Sprite leftSpriteClose;

public Sprite rightSpriteClose;

public Sprite leftSpriteOpen;

public Sprite rightSpriteOpen;

public SpriteRenderer leftSpriteRenderer;
public SpriteRenderer rightSpriteRenderer;

//3
public GameObject sparkPrefab;
b

Now the Container script has these variables:

1. ABoolean to flag if the trash can is opened or not, a GameObject reference to the
prefab of its content, and a spawnPoint to serve as the position from which the loot
will spawn.

2. References to the left, right, closed and open sprites, and their corresponding
SpriteRenderers.

3. Areference to the hit spark prefab that shows when the container is hit.

Add these methods below the variable declarations:

//1

public bool CanBeOpened() {
return isOpen != true;

b

//2

public void Hit(Vector3 hitPoint) {
GameObject sparkObj = Instantiate(sparkPrefab);
sparkObj.transform.position = hitPoint;

//3
public void Open(Vector3 hitPoint) {

K

isOpen = true;

SetSprites(leftSpriteOpen, rightSpriteOpen);

GameObject obj = Instantiate(prizePrefab);
obj.transform.position = spawnPoint.transform.position;

s

//4

private void SetSprites(Sprite leftSprite, Sprite rightSprite) {
leftSpriteRenderer.sprite = leftSprite;
rightSpriteRenderer.sprite = rightSprite;

Here you handle the container’s behavior.

1.

CanBeOpened returns a Boolean to indicate whether the container can still be
opened.

Hit spawns a sparking effect when the container is hit at its hitPoint parameter.

Open changes its sprite to the left and right versions of the open sprite. It then
spawns an instance of the prizePrefab at the spawnPoint position.

SetSprites is a helper method that changes the sprites of the leftSpriteRenderer
and rightSpriteRenderer.

Save the script and open Hero. cs. Remember how you made it so that actors couldn’t
hit objects? That’s going to make it hard on the hero!

Add this override for the DidHitObject method from the Actor class:

public override void DidHitObject(Collider collider, Vector3 hitPoint,
Vector3 hitVector) {
Container containerObject = collider.GetComponent<Container>();
//1
if (containerObject !'= null) {
containerObject.Hit(hitPoint);
if (containerObject.CanBeOpened() && collider.tag != gameObject.tag)

containerObject.Open(hitPoint);

¥
} else {
//2
base.DidHitObject(collider, hitPoint, hitVector);
Iy
¥

Your fancy new override does the following:

1.

If the object hit contains a Container script, then the attack will open the container.

2. Else, the base Actor class script processes the DidHit script by calling

base.DidHitObject(collider, hitPoint, hitVector);

K

Save the script and return to the editor — time to assign some references to make the
trash can prefab work.

Drag the TrashCan prefab into the Hierarchy to create an instance of it. Select the
HitBox child of TrashCan and add a Container component to it.

= Hierarchy | & .= ©inspector | & .=
Create 7| (QrAll g ¥ Hitbox [_Istatic +
v € Game* = Tag 4 + | Layer| Friendly Y|
Lt Prefab | Select | Revert | Apply |
» MyGameManager
b UlCanvas ¥ .~ Transform o %,
EventSystem Position X0 Y 0 zZ0
» ControlCanvas Rotation X0 Y 0 zZo
WorldCanvas Scale x[1 Y1 z1
::.?::zg:n v i ¥ Box Collider @ =
Edit Collider
RightSprite Is Trigger 4
LeftSprite Material None (Physic Material) (o]
shadow Center x 0 Y125 z075
Saaco Size x[25 Y25 z[1s
SpawnPoint _—
¥ (¥ Container (Script) @ = %
Script Container (o]
Prize Prefab None (Game Object) [0}
Spawn Point None (Transform) [o]
Left Sprite Close None (Sprite) [o]
Right Sprite Close None (Sprite)]
Left Sprite Open None (Sprite) o]
Right Sprite Open None (Sprite) (o]
Left Sprite Renderer None (Sprite Renderer) [0}
Right Sprite Renderer None (Sprite Renderer) (o]
Spark Prefab None (Game Object) [o]

Set Prize Prefab to the prefab located at Prefabs \ POW300 and drag its sibling
SpawnPoint to the Spawn Point slot.

Set Left Sprite Renderer to its LeftSprite sibling.

Set Right Sprite Renderer to its RightSprite sibling and set Spark Prefab to the
Prefabs \ HitParticle prefab.

Assign the sprites used by the trashcan:

Left Sprite Close to the trashcan_left sprite

Right Sprite Close to the trashcan_right sprite

Left Sprite Open to the trashcan_hit _left sprite

Right Sprite Open to the trashcan_hit_right sprite

= Hierarchy © Inspector

| Create *| (@Al) ¥ [Hitbox | [static +
V?Game' = Tag | Untagged 3] Layer[Friendly e]
MyHero
e aianans Prefab | Select | Revert | Apply |
» UlCanvas ¥ .~ Transform o 2
EventSystem v i ¥ Box Collider o
» ControlCanvas v (¥ Container (Script) I
WorldCanvas Script . Container o]
» POW300

Prize Prefab ' POW300
Spawn Point A SpawnPoint (Transform)
Left Sprite Close Etrashcan_left

¥ TrashCan
Hitbox

RightSprite
LeftSprite Right Sprite Close EEltrashcan_right
shadow LeftSprIteOpen [Eltrashcan_ hlt_left

Leﬁ Sprite Renderer [&!LeftSprite (Sprite Renderer)
Right Sprite Renderer (= RightSprite (Sprite Renderer)
Spark Prefab \ HitParticle

ol 0lo 0@ 0 0lalo

[Add Component]

On to setting the TrashCan’s layer: Select TrashCan from the Hierarchy and set its
Layer to Wall. When prompted, select Yes, change Children.

© Inspector

¥ TrashCan | [Static v
Tag | Untagged ; ILayer wall :'
Prefab | Select | Revert I Apply

Select the HitBox child of TrashCan. Set its Layer to Enemy.

[mspecor L]
¥ Hitbox | [static «

Tag | Untagged Il_ayer Enemy I
Prefab | Select | Revert Apply |
» .~ Transform @ = %
» i ¥ Box Collider @
» o [V Container (Script) o %

Select TrashCan in the Hierarchy again and click Apply to save the prefab.

© Inspector
¥ [TrashCan | M static v
Tag | Untagged 4| Layer| wall &
Prefab | Select] Revert |l Apply [|

Finally, set its position to (X:12,Y:0, Z:-2).With that, you’re placing the trash can in
front of the player when the level starts.

Play the game and find a trash can to punch.

r—-"'7 = -

e
e

4 “.’_-f-’ >
R k\\\\\\

A T

It works as intended!
One trash can isn’t enough. Take a moment to place more trash cans!

Drag the Prefabs \ Map1 prefab into the scene. Reset its Transform. Also add a new
Empty Child to Map1, name it Interactables and reset its Transform.

l Create 'I (arall)

v Q Game* v
> MyHero
b MyGameManager
b UlCanvas
EventSystem
» ControlCanvas
WorldCanvas
» POW300
P TrashCan
¥ Mapl
P TileMaps
P Colliders

I Interactables

Make TrashCan a child of Interactables. Set its position to (X:25, Y:0, Z:-1).

Duplicate the TrashCan GameObject and position this second instance to (X:46, Y:0,
7:1.27).

Select Mapl1 in the Hierarchy and click Apply. Once saved, delete the Map1 instance.
Delete all instances of POW300 and TrashCan that are left in the scene as well.
Save the scene and project and press Play.

Note the conveniently placed trash can near the first battle event. The droids walk
around the trash can, exactly as you designed!

lml_

F ‘/ HEARLTH

"t*'

‘ T i ?l

~
f

Break the trash can to get a POW300 and smoke those dreadful droids!

K

Where to go from here?

Congratulations! You made PompaDroid more challenging with the addition of a boss
and the hero’s first powerup.

Perhaps the biggest thing you did in this chapter was build on top of your already
functional game! Your work in this chapter was largely appending and overriding
classes and methods, and it evolved the game a bit to make it more interesting. You
added:

» Abig, bad, boss

» A powerup to allow the hero to beat the boss: the POW300 (Punch-a-Tron
Operational Work Gloves)

» Breakable containers for the powerup
You’re almost ready to ship it! But don’t even think about a release until you add audio.

PompaDroid needs some catchy background music, sound effects and a bit more polish.
Any guesses about what you’ll do in chapter 11?

: Audio and Final

Take a moment to reflect on your progress. Some time ago, you started building this
game with nothing but this book, your computer, and a jumble of assets. You may or
may not have known much about programming, game design, or Unity. But obviously,
you picked up this book because you wanted to learn how to build a game from the
ground up. Consider that endeavor complete, because at this point, you have a
functional game on your hands!

That said, if you were to ship the game as-is, you’d get a lot of, um, constructive
criticism because of the odd little glitches and rough edges throughout. Players expect a
high-quality game, even when they’re not paying for it. One of the silliest things you
can do is release a game before you’ve tested it and looked for easily solvable issues
that could annoy your players — such as unwarranted restraint of movement, sound
effect glitches, layering issues, funky colliders, etc. I think of this phase as “polishing”
the game.

Since audio is pretty easy to implement, this chapter will include adding sound effects
as well as polishing the game. In this (almost final) chapter, you’ll:

Add background music and sound effects.

Add intro/outro text and a splash loading screen.

Squash some annoying bugs to improve the player experience.

Polish a few things here and there to improve quality of the final product.

By the end of this chapter, PompaDroid should be complete!

The importance of sound

PompaDroid is an action-packed game. As it stands right now, the game’s fun and
visually appealing in a retro kind of way.

y ‘ HERLTH

b 1 NEES ‘! I
- € NSEE N\ Mz 22

"1 ! L -l‘ &
i

Beauty is only skin deep, they say, and games are a multi-sensory experience. So any
game worth playing will appeal to the ears at least as much as the eyes. Audio adds
depth and immerses the player in the game-world you’ve created.

Overview: Unity’s audio toolkit

Unity has an AudioSource component that handles and plays audio files. You just have
to plug in logic, assets and references for each audio clip you want to play.

Beat ’Em Up Game Starter Kit Chapter 11: Audio and Final Touches

You have a number of variables to work with for each AudioSource, most notably:
e Mute: silences the AudioSource when checked.

» Play On Awake: plays the AudioClip upon creation of the component.

» Loop: repeats the playback of the AudioClip.

» Volume: adjusts how loudly the clip plays.

n raywenderlich.com 435

v | ¥ Audio Source
AudioClip

Qutput

S
‘None (Audio Clip) o
[©

None (Audio Mixer Grov

I Mute

Bypass Effects

Bypass Listener Effect| |
ass Reverb Zones

L
U

Reverb Zone Mix

» 3D Sound Settings

Play On Awake

Loop (]

Priority e y— | 128
High

| Volume O |1

Stereo Pan 0
Left Right

Spatial Blend O 0

2D

3D
O [1

Note: Unity’s documentation is the best place to learn about AudioSource and its
variables. I’'m about to brief you on it, but if you must peek right now, please go
ahead. I’ll wait for you right here. https://docs.unity3d.com/Manual/class-

AudioSource.html.

Every audio source needs a listener, and in the case of Unity, it is the AudioListener.

() ¥ Audio Listener

@ 3 %,

Similar to how a Camera component renders what it sees, an AudioListener plays what
it hears. By default, Unity’s cameras are created with an AudioListener component

already attached. Makes sense, right?

That’s all you need to know about Unity’s audio system to get started! PompaDroid is
about to level up and transform into a real game. Just wait until you hear the catchy

tunes.

K

Adding audio

Import the PompadroidAudio.unitypackage from the UnityPackages folder. Inside,
you’ll find a single background music file in .mp3 format, and multiple sound effects
in .wav format.

| JON | Import Unity Package

PompadroidAudio

v ¥ &5 Audio
- bgm_latin_industries.mp3 (NEW]
W & sfx_blip.wav NEW |
4 %sfx_enemydeath.wav [NEW |
¥ & sfx_herodeath.wav [NEW |
W & sfx_hit0.wav (NEW]
¥ & sfx_hitl.wav (NEW |

[All][None] [Cancel][Import]

Note: Unity supports an array of audio file formats. For a full list, visit https://
docs.unity3d.com/Manual/AudioFiles.html.

The audio file prefixed with bgm_ will be your background music. It will loop during
gameplay. Audio files prefixed with sfx_ are sound effect files — short audio clips — that
play when an action happens, for example, button clicks and player hits.

Play that funky music

Start by loading the MainMenu scene from the Scenes folder. Add a new Audio/Audio
Source GameObject to the Hierarchy.

Beat ’Em Up Game Starter Kit Chapter 11: Audio and Final Touches

Copy
Paste

Rename
Duplicate
Delete

Select Prefab

Create Empty

3D Object

2D Object H | @ Pro
Light lroccenel |
u
Particle System

Camera

Rename it GameAudioManager. This AudioSource will play the background music of
the game.

GameAudioManager

Set bgm_latin_industries as its AudioClip and check both Play On Awake and Loop.

n raywenderlich.com 438

@ Inspector | - vEI

4 ¢ [GameAudioManager [static «

Tag | Untagged 4+ | Layer| Default |

» . Transform o

v .| ¥ Audio Source @l 5 #I

AudioClip & bgm_latin_industries [o]

Output None (Audio Mixer Group) (o]
Mute -
Bypass Effects -

Bypass Listener Effect| |
ass Reverb Zones

Play On Awake 4

Loop 4

Priority O 128
High Low

Volume —() | 1

Pitch Cr 1

Stereo Pan 9 0
Left Right

Spatial Blend (Or—— O
2D D)

Reverb Zone Mix — |]
» 3D Sound Settings

Next, you’ll need an AudioListener in the MainMenu scene since it doesn’t have a
camera. Select the Canvas and add an AudioListener component to it.

© Inspector 2 Navigation .=
g ¥ [Canvas [Istatic
Tag | Untagged + | Layer| Ul 4
» 5 Rect Transform @ = %
»[| ¥ canvas @ = %
» [¥ canvas Scaler (Script) @ = %
» 5 (¥ Graphic Raycaster (Script) @ = %
v « (¥ Main Menu (Script) @ =
Script MainMenu [c]
(©) ¥ Audio Li o %,

Save the scene and click Play. Voila! Background music added. It’s working but you
might have noticed that when you touched the screen to start, the music stopped
abruptly.

Theoretically, you could add an AudioSource to the Game scene, but that would result
in the music starting over when you play the game. A better option is to retain the
AudioSource in the MainMenu scene when the Game scene loads, so that the only time
the music repeats from the start is when the hero dies and the game resets. For that to
happen, you’ll need custom logic to prevent the GameAudioManager from being
destroyed when switching scenes.

Create a new C# script named AudioManager.cs in the Scripts folder. Replace its
contents with:

using UnityEngine;

K

public class AudioManager : MonoBehaviour {
//1
public static AudioManager Instance;
void Awake() {
//2
if (Instance == null) {
Instance = this;
DontDestroyOnLoad(gameObject);

} else {
//3
if (Instance !'= this) {
Destroy(gameObject);
}

Iy
Iy

Your new AudioManager class acts as a Singleton: a programming design pattern that
allows only one instance of a class to exist. Here is how it works:

1. First, create a static reference to AudioManager that points to the only existing
instance of the AudioManager. As a static variable, you can access it from any class
by calling AudioManager.Instance.

2. The Awake method checks if the static variable is assigned. If not, it sets the current
AudioManager instance as the Instance variable and calls
DontDestroyOnLoad(gameObject) to save the AudioManager from destruction when
the game scene changes.

3. Alternatively, if Instance is not the same as the AudioManager instance, you destroy
it because the game already has an instance of the AudioManager.

Save the script and open the MainMenu script. Append the Start method with the line
below:

AudioManager.Instance.GetComponent<AudioSource>().Play();

With this, you reset the AudioSource component of AudioManager when the MainMenu
scene loads.

Save the script and return to Unity. Add the AudioManager to the
GameAudioManager GameObiject.

© Inspector [

¥ GameAudioManager | Cstatic «
Tag | Untagged ¢ | Layer| Default ¢
¥ .~ Transform
Position X0 'Y o0
Rotation X 0 'Y 0
Scale X1 ¥ [1
» | ¥ Audio Source

¢ Audio Manager (Script)
Script + AudioManager

[Add Component

= Hierarchy
| create - | (ATl
v

» Canvas
EventSystem

GameAudioManager

Assets » Prefabs »
> ¢ ControlCanvas
» L¢ EnemyBoss

» | EnemyLifeBar

Vi Assets I HitParticle
>G5 Animation | |4 Hitvalue
&l Audio &l Map

» & Images > g Mapl
LevelData p i POW300
=~ Prefabs » L TrashCan

> Scenes

&l Scripts

Save the scene and open the Game scene from the Scenes folder.

Drag the GameAudioManager prefab to the Hierarchy. Save the scene and navigate
back to the MainMenu scene.

EHearchy |
|create ~| @A
v Q Game v

» MyHero

» MyGameManager

¥ UlCanvas

EventSystem
» ControlCanvas

WorldCanvas .
GameAudioManager

Run and play the game. Even when loading other scenes, the background music should
keep playing. Boom. Audio track done!

Next, you’ll add sound effects to make the game feel alive.

Adding sound effects

Sound effects add depth and improve the player’s experience. Even subtle pops, clicks
and dings add up to a more immersive, satisfying game. It pays off to be thoughtful
when it comes to the audio environment! You’ll start by adding an effect for the start
button.

Expand Canvas in the Hierarchy and select its child Image. Add an AudioSource to it.
Set sfx_blip as the AudioClip and uncheck Play On Awake.

© Inspector I & =
@ ¥ Image [Static «
e Tag | Untagged 4+ | Layer| Ul +
» - Rect Transform it 8
@ Canvas Renderer - 8
» "4 ¥ Image (Script) @ %,
» o [Button (Script) o
v] ¥ Audio Source ﬁ "* 3,
AudioClip & sfx_blip |
Output 'None (Audio Mixer Group) | o
Mute LJ
Bypass Effects]

Bypass Listener Effects [|
Bypass Reverb Zones [_|

| Play On Awake] I

Loop (]

Priority O 128 |
High Low

Volume O (1 |

Pitch O 1 |

Stereo Pan Cr 0 |
Left Right

Spatial Blend - 0 |
2D 3D

Reverb Zone Mix O |1 |

» 3D Sound Settings

Still working with Image, find the Button component and add a new On Click() event
to it. Drag the AudioSource to the Object field and select the AudioSource\Play()
method. This should play a blip when the player touches the screen to start the game.

K

¥ [Image | [static «

Tag | Untagged +| Layer| ul a
»3@ Rect Transform

Canvas Renderer

nlelee
LIREIRE AL I8
w8

» "4 ¥ Image (Script)

v o [/ Button (Script)
Interactable ¥4
Transition [None ™
Navigation [Automatic s

[Visualize]
On Click ()

[Runtime Only :] [MainMenu.GoToGame 3]
|z Canvas (Mainl_©|

Runtime Only + || AudioSource.Play 3
! Image (Audio | @

»] ¥ Audio Source ¥ @ = %

[Add Component]

That’s it for the MainMenu scene. Save the scene.

Next up is spicing up punches and deaths. But first, you need some logic. Open Actor.cs
and add these variables below hitValuePrefab:

public AudioClip deathClip;
public AudioClip hitClip;

public AudioSource audioSource;

The first two variables reference the clips to play when the Actor punches or dies. The
third variable will serve as a reference to the AudioSource responsible for playing these
sound clips.

Add this method underneath ShowHitEffects:

public void PlaySFX(AudioClip clip) {
audioSource.PlayOneShot (clip);

Your new helper method, PlaySFX, plays the clip parameter when called. It uses the
audioSource.PlayOneShot method, which plays the sound clip once.

K

Append the end of the Die method with:

PlaySFX (deathClip);
Now Die will play the deathClip when the Actor dies.
Add this to the end of the HitActor method:
PlaySFX (hitClip);
Now HitActor plays the appropriate sound effect when one Actor hits another.

Save Actor.cs and open Hero.cs. You need to add the same logic to Hero since it
overrides Actor’s HitActor method.

In the HitActor method, add this line beneath AnalyzeNormalAttack inside the if
(baseAnim.GetCurrentAnimatorStateInfo(@).IsName("attackl")) condition and also
below AnalyzeNormalAttack inside the
(baseAnim.GetCurrentAnimatorStateInfo(@).IsName("attack2")) condition:

PlaySFX (hitClip);

For reference, the two insertions inside the two conditionals are shown in the snippet
below:

if (baseAnim.GetCurrentAnimatorStateInfo(@).IsName("attackl")) {

AttackData attackData = hasWeapon ? currentPowerup.attackDatal
: normalAttack;

AnalyzeNormalAttack (attackData, 2, actor, hitPoint,
hitVector);

//1

PlaySFX (hitClip);

if (hasWeapon) {

) currentPowerup.Use();
} else if
(baseAnim.GetCurrentAnimatorStateInfo(@).IsName("attack2")) {
AttackData attackData = hasWeapon ? currentPowerup.attackData2
: normalAttack?2;

AnalyzeNormalAttack (attackData, 3, actor, hitPoint,
hitVector);

//2

PlaySFX (hitClip);

if (hasWeapon) {

. currentPowerup.Use();

}

These insertions will play the hit audio clip when the hero punches with the 1-2 combo
and hits an enemy. You may be wondering why just the two, and not all of the hero’s
attacks. Well, this is because our pompadoured protagonist deserves a unique sound
effect for his much stronger punches.

Still in Hero. cs, add the following variable beneath powerupRoot:

public AudioClip hit2Clip;
This variable will reference the special sound effect for strong attacks.

You need to play this sound effect in three places, once for each of the hero’s three
strong attacks.

In the HitActor method, add this line:
PlaySFX (hit2Clip);
to the following three locations:

1. Beneath AnalyzeNormalAttack inside the else if
(baseAnim.GetCurrentAnimatorStateInfo(@).IsName("attack3")) condition

2. Beneath AnalyzeNormalAttack inside the else if
(baseAnim.GetCurrentAnimatorStateInfo(@).IsName("jump_attack")) condition

3. Beneath AnalyzeNormalAttack inside the else if
(baseAnim.GetCurrentAnimatorStateInfo(@).IsName("run_attack")) condition:

For reference, the three insertions are shown in the snippet below:

else if (baseAnim.GetCurrentAnimatorStateInfo(@).IsName("attack3")) {
AttackData attackData = hasWeapon ? currentPowerup.attackData3
: normalAttack3;
AnalyzeNormalAttack (attackData, 1, actor, hitPoint,
hitVector);
//1
PlaySFX (hit2Clip);
if (hasWeapon) {
currentPowerup.Use();

}

else if (baseAnim.GetCurrentAnimatorStateInfo(@).IsName("jump_attack")) {
AnalyzeSpecialAttack (jumpAttack, actor, hitPoint, hitVector);
//2
PlaySFX (hit2Clip);

else if (baseAnim.GetCurrentAnimatorStateInfo(@).IsName("run_attack")) {
AnalyzeSpecialAttack (runAttack, actor, hitPoint, hitVector);
//3
PlaySFX (hit2Clip);

K

}

These insertions will play the stronger hit clip when the hero lands the third punch in a
combo, the run attack or the jump attack.

Next, still in the Hero script, go to the DidHitObject method and add this line
undearneath containerObject.Hit(hitPoint);:

PlaySFX(hitClip);

With that, the hit sound effect will play when the hero hits the trash can, or any other
object you may add in the future.

Save the script and return to Unity to set up references to all that beautiful code. Open
the Game scene, select MyHero in the Hierarchy and add an AudioSource to it.
Uncheck Play On Awake to prevent the component from playing when it is first
created.

© Inspector | & =
@ ¥ MyHero [_Istatic «
e Tag | Hero 4+ | Layer| Friendly |
» _~ Transform e
b o [Hero (Script) o &,
» i ¥ Box Collider o &,
b % Rigidbody 8
> o [Walker (Script) i
» ¥ Nav Mesh Agent @ = %
v] ¥ Audio Source Il
AudioClip None (Audio Clip) [o]
Output None (Audio Mixer Group) [0}
Mute O
Bypass Effects J
Bypass Listener Effects []
ass Reverb Zones
IPIav On Awake EJI
Loop]
Priority ~ [128 |
High Low
Volume O |1
Pitch . 1
Stereo Pan 0
Left Right
Spatial Blend O 0
2D 3D
Reverb Zone Mix O |1

» 3D Sound Settings

Next, you’ll assign references for the Hero component.

Set Death Clip to sfx_herodeath, Hit Clip to sfx_hit0, and Hit 2 Clip to sfx_hitl. Drag
the Audio Source you recently added to the Audio Source field. Be sure to fold in some
of the components to make this easier.

K

Beat ’Em Up Game Starter Kit Chapter 11: Audio and Final Touches

Your droids need some audio love too.

Select the EnemyRobot prefab in the Prefabs folder, add an AudioSource component
to it and uncheck its Play On Awake field. In its Robot component, set Death Clip to
sfx_enemydeath, Hit Clip to sfx_hit0 and Audio Source to the one you just added.

u raywenderlich.com 447

Note: There is no need to save the prefab because you modified the prefab itself —
not an instance in the scene.

The boss deserves unique audio, don’t you think?

Select it, add an AudioSource component and uncheck Play On Awake. In its Boss
component, set Death Clip to sfx_enemydeath, Hit Clip to sfx_hitl and Audio
Source to the audio source you just added.

To emphasize the Boss’ punches’ impact, you give him the stronger sounding sfx_hit1.

Death Clip «+sfx_enemydeath (o]
Hit Clip &0 sfx_hitl ©
Audio Source = EnemyBoss (Audio Source) (o]

]

Save the scene and project then click Play. Punch something. Now punch something
else then let yourself take a punch. Sound effects make it so much more believable!

Great! Audio is now integrated into the game, serenading you with a catchy tune while
you trash those droids!

At this point, your game is nearly complete but not ready to ship. Before you can hang
your hat on this game, you need to do some polishing and bug fixing. From this point
forward in this chapter, you’ll be cleaning things up and adding little touches that
enhance the game.

Players appreciate knowing what level they’re playing, but PompaDroid doesn’t give
any clues to the player. Not even an obligatory Game Over message when the droids
prevail. Don’t leave the player hanging!

The first bit of polish is adding in prompts to tell the player which level they’re on and
when the level has ended.

You’ll implement this by adding some level title text to the beginning and end of each
level, and an ominous “GAME OVER” message when the hero dies.

HERLTH

\\Jh

\r’ ﬂ""

E" “:_ ‘-n
s

L]

.
f
-

Import BannerText.unitypackage to get the assets you’ll need to create these text
marquees.

[XN) Import Unity Package
BannerText
v ¥ &5 Animation
v M&u
4 D banner_anim_controller.controller | NEW |
[*» banner_hide_anim.anim [NEW|
(¥ » banner_idle_anim.anim (NEW |
»' banner_show_anim.anim | NEW |
@gameover_hide_anim.anim { NEW |
v D gamover_anim_controller.controller | NEW |
v [G Images
v [G Fonts
04b03.ttf
v 4 &5l Prefabs
(¥ ¢ GameOverBanner.prefab {NEW |
(¥ ¢ LevelNameBanner.prefab | NEW]|

You’ll see it contains two incomplete prefabs: a GameOverBanner, a prefab for the
banner marquee when the hero dies, and a LevelNameBanner prefab, to be displayed
at the beginning and end of each level.

K

To add these into the game, create a new C# script named LoadMainMenu.cs in the
Scripts folder and open it. Replace its contents with the following code:

using UnityEngine;
using UnityEngine.SceneManagement;

public class LoadMainMenu : MonoBehaviour {
public void GameOverDone() {
SceneManager.LoadScene(""MainMenu'");
b
b

The LoadMainMenu script will load the MainMenu scene when the GameOverDone
method is called.

Save the script and open GameManager.cs. You’ll need to add the code that shows the
banner texts when the hero dies or when a level has been started or completed.

Start by adding the following namespace import at the top of the file:
using UnityEngine.UI;

This allows the GameManager class to use UI.Text classes.

Next, add these variables underneath bossPrefab:

public GameObject levelNamePrefab;
public GameObject gameOverPrefab;

public RectTransform uiTransform;

Here you have references to the prefabs of the level name and the game over texts. It
also creates a variable to hold a reference to the RectTransform that will serve as the
parent of all UI elements in the GameManager.

Your next block goes below FlickerGoIndicator:

//1

private void ShowBanner(string bannerText, GameObject prefab) {
GameObject obj = Instantiate(prefab);
obj.GetComponent<Text>().text = bannerText;
RectTransform rectTransform = obj.transform as RectTransform;
rectTransform.SetParent(uiTransform);
rectTransform. localScale = Vector3.one;
rectTransform.anchoredPosition = Vector2.zero;

}
//2

public void GameOver() {
ShowBanner("GAME OVER", gameOverPrefab);

K

//3
public void Victory() {

ShowBanner ("YOU WON", gameOverPrefab);
s

/74
public void ShowTextBanner(string levelName) {
ShowBanner(levelName, levelNamePrefab);

Iy
Each of these methods serves a different purpose for the GameManager:

1. ShowBanner creates an instance of its prefab parameter and parents it to the class’
uiTransform field. It also sets the title of the prefab’s Text component to the value
of the bannerText parameter.

2. GameOver is a helper method that instantiates the gameOverPrefab variable with the
string “GAME OVER”. You’ll use this method when the player dies.

3. Victory is a helper method that instantiates the gameOverPrefab variable with the
string “YOU WON”. You’ll use this when the player completes the game.

4. ShowTextBanner shows the leveWNamePrefab with the value of the levelName
parameter.

Find these in DidFinishWalkout:

Debug.Log("Game Completed!");
SceneManager.LoadScene(""MainMenu");

And replace them with:

Victory();
With that, you put the victory banner on display when the player wins the last level.
Locate AnimateNextLevel() and replace its contents with this block:

ShowTextBanner(currentLevelData. levelName + " COMPLETED");
yield return new WaitForSeconds(3.0f);
SceneManager.LoadScene("Game");

Here you show the text banner with a “LEVEL NAME COMPLETED” message when the
last battle event of a level has been completed.

Locate LoadLevelData and append the end of the method with this line:

ShowTextBanner(currentLevelData. levelName);

K

That will show the current name of the level when the game starts. This name is defined
as the Level Name parameter in the LevelData scriptable object.

© Inspector | "=

LevellData @ = %

(Open)

Script LevelData (o]
b Battle Data

Level Prefab i Mapl [0}

ILeveI Name Level 1 |

Save the script and open Hero.cs so that you can call the GameOver method when the
hero dies.

Start by placing this variable below hit2clip:

public GameManager gameManager;
You’ve just added a reference to the GameManager in the Hero class.
Add the following method to the bottom of the class:

protected override void Die() {
base.Die();
gameManager.GameOver();

This method calls gameManager.GameOver when the hero dies, displaying the game over
text on screen.

That should do it, save the scripts and return to Unity to play around with prefabs and
references and get the text working.

Select the GameOverBanner prefab in the Prefabs folder and add a LoadMainMenu
component to it. Since you’ve added the component to the prefab, all instances of the
prefab now contain the component.

© Inspector | S
. ¥ GameOverBanner [|Static «
Tag | Untagged 4| Layer| s |
>3€ Rect Transform o
{© Canvas Renderer o
b ¥ Text (Script) o
> 3= ¥ Animator - 8
« |+ Load Main Menu (Script) @ ' %
Script LoadMainMenu (o]

Now select LevelNameBanner in the Prefabs folder and add a DestroyOnComplete
component to it.

© Inspector | "=
. ¥ [LevelNameBanner [_Istatic =
Tag | Untagged 4| Layer| ul 4]
»3@ Rect Transform e
@ canvas Renderer il e
> [¥ Text (Script) @ 5 %,
» 55 [+ Animator o 3,
« Destroy On Complete (Scripty [5! °II
Script DestroyOnComplete ©

Select MyHero in the Hierarchy. Find the Game Manager field of the Hero
component and drag MyGameManager onto the field.

Hit 2 Clip & sfx_hitl (o]
| Game Manager ' MyGameManager (GameManager)

Select MyGameManager in the Hierarchy. Find the following items in the Prefabs
folder and drag them to the corresponding fields in the GameManager component of
MyGameManagetr.

e LevelNameBanner to Level Name Prefab
¢ GameOverBanner to Game Over Prefab

Finally, change the value of UI Transform to UICanvas.

v ¥ Game Manager (Script) @ = =
Script < GameManager (o]
Actor | « MyHero (Hero) (o]
Camera Follows

More Variables

Level Name Prefab |/ LevelNameBanner]
Game Over Prefab |\ GameOverBanner]
Ui Transform _-UlCanvas (Rect Transform) [c]

Save the scene and the project, and play through a level. Fancy! You can’t miss the start
and end of the levels anymore.

,ﬁ@'

Ll 1 COMPLETED

A bold GAME OVER message shows up when you lose. Once the animation finishes, the
game kicks you back to the main menu.

HEALTH

IEI:II'1E ll| I:'

Make sure you play until you defeat the last boss on the last level to see YOU WON
before you return to the main menu. Neat! PompaDroid is looking a bit sharper already.

ol o

Turn your attention to the transition between the main menu and the game — it’s a
little jarring without some kind of loading indicator. You know how players hate to wait
for no apparent reason. :]

Your polish will be simple but effective: a solid black overlay that displays “Loading...”
in the bottom-right corner.

Loading...

Import LoadingScreen.unitypackage, which contains the LoadingScreen prefab.

O Import Unity Package

LoadingScreen

v [J Fonts
| |A] 04b03 1tf [NEW |
v [G Prefabs
W ¢ LoadingScreen.prefab | NEW |
| All || None | | Cancel || Import |

Of course, you’ll need to add logic to get the loading screen to show up, so open
GameManager.cs and add this variable declaration below uiTransform:

public GameObject loadingScreen;
This variable stores a reference to the loading screen.
Add this Awake method right below Start():

void Awake() {
loadingScreen.SetActive(true);

Here you show the loadingScreen upon creation of the GameManager.

K

Insert this at the end of the LoadLevelData method:

loadingScreen.SetActive(false);

Now the final task of LoadLevelData is to hide the loading screen.

Save the script and return to Unity.

From the Prefabs folder, drag the LoadingScreen prefab into the Hierarchy to create
an instance. Make sure to disable the GameObject of the LoadingScreen — it should be

hidden by default.

Note: You may be wondering why you just disabled the loading screen when
GameManager’s Awake () method loads it. Allow me to explain: It’s simply easier to
work with the Game scene. Otherwise, you’d have to enable the loading screen

every single time you test and build the game.

© Inspector | "=
ELoadingScreen [IStatic «
Tag | Untagged 4+ | Layer| Default sl
Prefab | Select | Revert | Apply |

Drag the LoadingScreen you just added over to MyGameManager and into the

LoadingScreen field.
© Inspector 2% Navigation =
4 ¥ MyGameManager [_static «
Tag | Untagged 4+ | Layer| Default ™

» .~ Transform o

v i’ ¥ Game Manager (Script) @ = %
Script GameManager (o]
Actor « MyHero (Hero) o]
Camera Follows (v
Camera Bounds « MainCamera (CameraBounds) (o]
Current Level Data None (Level Data)]
Has Remaining Events J

P Active Enemies

» Spawn Positions
Current Level Background None (Game Object) (o]
Robot Prefab s EnemyRobot [0}
Go Indicator ¥ Golndicator o]
Walk In Start Target A IntroStartMarker (Transform) [0}
Walk In Target A IntroEndMarker (Transform) [0}
Walk Out Target A ExitMarker (Transform) [0}

P Levels
Enemy Life Bar « EnemyLifeBar (LifeBar) [0}
Boss Prefab \# EnemyBoss [0}
Level Name Prefab s LevelNameBanner [0}
Game Over Prefab \¢ GameOverBanner o
Ui Transform ~-UlCanvas (Rect Transform) o}
Loading Screen vLoa_dingScreen ol

» = ¥ Input Handler (Script) -] #,I

Save the scene and the project. Open the MainMenu scene and run the game. Check
that the “Loading...” text displays at the bottom right until the game loads.

'-ifﬁhdrﬁfﬁl-irﬁfﬁTlﬂ

S ,\‘-.
1= o * Leuel 1

Touch to Start

Bling! PompaDroid is a little shinier than it was before. So far, you’ve added intro and
exit texts, as well as a loading text. Don’t forget about the audio! You’re making
excellent progress.

Squashing bugs

No doubt that you’ve noticed a few bugs as you’ve tested and played. Bugs are pretty
much unavoidable when you’re programming, so don’t sweat it. Unexpected things can
— and will — happen anytime you modify code. Remember that bugs can always be
replicated and traced to specific blocks of code.

Note: Debugging can be a bit frustrating, but it’s also kind of like a challenge. A
treasure hunt. A noble quest for code domination, even. Over the next several
steps, you’ll fix some known bugs. In doing so, you might stumble across or even
create new bugs.

For now, just stick to the known bugs. If you feel the urge, you can come back later
and see if you’re able to replicate and correct any other peculiar behavior. Feel free
to come talk about it in the forums!

Grounded jump bug

Currently, the hero has issues when jumping into a wall. Replicate it by holding the left
directional button and walking toward the left-side wall in the game. While still
holding the left button, press the jump button. The jump animation plays, but the hero
doesn’t gain any vertical height.

So you know the bug presents itself when the hero jumps toward a wall while adjacent
to it, which means you can fix it by implementing logic that prevents jumping toward
an adjacent wall but allows jumping in the opposite direction.

N

Trigger colliders that surround the hero on the front, near and far sides will address the
underlying problem. When he’s up next to a wall, the collider will aid with disabling the
hero’s ability to jump toward it. Below, three gray boxes depict the colliders you’ll
create:

Create a new C# script named JumpColliderItem.cs in the Scripts folder and open it.
Replace its contents with this block:

using UnityEngine;
using System.Collections;

public class JumpColliderItem : MonoBehaviour {
public int isTriggeredCount = 0;

void OnTriggerEnter(Collider collider){
isTriggeredCount++;

void OnTriggerExit(Collider collider)<{
isTriggeredCount——;

}

In here, you handle colliders that dare to overlap any walls. When an overlap occurs,
OnTrigger increments or decrements the value of isTriggeredCount.

Save the script and create another C# script named JumpCollider.cs. Replace its
contents with this:

using UnityEngine;
using System.Collections;

public class JumpCollider : MonoBehaviour {

//1

public JumpColliderItem frontCollider;
public JumpColliderItem farCollider;
public JumpColliderItem nearCollider;

//2
public bool CanJump(Vector3 direction, Vector3 frontVector){
if (direction.z > @ && farCollider.isTriggeredCount > 0) {
return false;
} else if (direction.z < @ && nearCollider.isTriggeredCount > 0) {
return false;
} else if (frontVector.x < 0 && direction.x < 0 &&
frontCollider.isTriggeredCount > 0) {
return false;
} else if (frontVector.x > 0 && direction.x > 0 &&
frontCollider.isTriggeredCount > 0) {
return false;
¥
return true;
¥
}

The JumpCollider class helps determine if a jump in a given direction is possible.

1. References to three JumpColliderItem colliders for the hero — one in front and one
on each side.

2. CanJump tests if a jump’s direction has a JumpColliderItem and that the value of
isTriggeredCount is greater than zero. If true, it blocks the jump by returning false,
otherwise the jump is allowed by returning true.

Save the script and open Hero.cs so you can disable jumping when the JumpCollider’s
CanJump method returns false.

Add the following variable to the top of the class, below the gameManager variable:
public JumpCollider jumpCollider;

Next, in the Update method, locate this if condition:
if (canJump && jump && !isKnockedOut &&

And replace it with this:

if (canJump && jump && !isKnockedOut &&
jumpCollider.CanJump(currentDir, frontVector) &&

You’ve added an additional condition to check the CanJump method from jumpCollider
before allowing the hero to jump.

Next, save the script and return to Unity. Open the Game scene and add an Empty
GameODbject child to MyHero and name it JumpColliders. Reset its Transform.

= Hierarchy | &= | ©nspector | a .=
Crsaia Ll & & JumpColliders [|static v
R =" Tag | Untagged 4+ | Layer| Friendly s |
: MY.:\eargowCharacter V.~ Transform @ = %
» HeroAnimator Position X0 Y 0 Z0
Rotation X 0 Y0 z0
s o Scale x1 vy z

Then, add an Empty GameObject child to JumpColliders and name it Front. Reset its
Transform and add a Box Collider to it.

Check Is Trigger, set its Center to (X:0.55, Y:1.2, Z:0) and Size to (X:0.1, Y:2.0,
Z:0.4). Also add a JumpColliderItem component to this GameObiject.

© Inspector |
|Front | CIstatic «
Tag | Untagged 4+ | Layer| WallDetector |
¥ .~ Transform 8
Position X0 'Y o 'z 0 |
Rotation X0 'Y 0 lz0 |
Scale X[1 |y 1 |z[1 |
v i (¥ Box Collider @ =
Edit Collider
IIs Trigger v
Material None (Physic Material) |0
Center X 0.55 [¥|1.2 'zZo
Size X 0.1 |¥ |2 1Z 0.4
¥ = Jump Collider Item (Script) @ =
Script JumpCollideritem (o]
Is Triggered Count 0]

This should add the collider in front of the hero in the Scene view.

Duplicate the Front GameObject and rename the copy Far. Reposition it by setting its
Box Collider’s Center to (X:0.3, Y:1.2, Z:0.3) and Size to (X:0.3, Y:2.0, Z:0.1).
This will position the box collider on the far side of the hero.

© Inspector

o [Far | [static «
Tag [Untagged 4] Layer| WallDetector al
¥ .~ Transform S
Position X 0 Y 0 Z 0
Rotation X 0 Y 0 Z0
Scale X1 Y|1 Z(1
v i (¥ Box Collider o
Edit Collider
Is Trigger 4
Material 'None (Physic Material)]
Center X 03 Y (1.2 Z 03
Size xo3 vz |z 'ﬁl
¥ = (¥ Jump Collider Item (Script) o %
Script JumpCollideritem [c]
Is Triggered Count o |

Duplicate the Far GameObject and rename it to Near. Set its Box Collider’s Center to
(X:0.3, Y:1.2, Z:-0.3) and Size to (X:0.3, Y:2.0, Z:0.1). This will create the box
collider on the near side of the hero, on the side closer to the camera.

© Inspector :
¥ [Near [static v
Tag | Untagged 4| Layer| WallDetector |
¥ .~ Transform I %
Position X0 YO Z 0
Rotation X 0 Y 0 zZo0
Scale X1 Y1 Z|1
v i ¥ Box Collider o %,
Edit Collider
Is Trigger ¥4
Material 'None (Physic Material) |0
Center X W_ITF_V Z -03
|Slze x[0.3 ¥ [2 1z[0.1
¥ @ Jump Collider Item (Script) o
Script JumpCollideritem o]
Is Triggered Count 0]

Select JumpColliders and add a JumpCollider component to it. Set its Front Collider
to Front, Far Collider to Far and Near Collider to Near.

(@ nspector e]|
¥ JumpColliders | [Jstatic «

Tag | Untagged 4 | Layer| Friendly :]

¥ .~ Transform o
Position X 0 'Y oo 'zo |
Rotation X 0 'Y 0 1Z0 |
Scale X (1 | ¥ |1 |Z |1 |
¥ < Jump Collider (Script) @ = %
Script + JumpCollider [0}
Front Collider |« Front (JumpCollideritem) JC)
Far Collider |« Far (JumpCollideritem)]
Near Collider « Near (JumpCollideritem) [o]

Your JumpColliderItems should have their own layer that only detects layers that block
the player.

Open the Tags and Layers window by selecting Edit \ Project Settings \ Tags and
Layers from the top menu. Add a new layer named WallDetector.

*_j‘} Tags & Layers @ = %
» Tags
» Sorting Layers
'V Layers
| Builtin Layer 0 Default
Builtin Layer 1 TransparentFX
Builtin Layer 2 Ignore Raycast
Builtin Layer 3
Builtin Layer 4 Water
Builtin Layer 5 Ul
Builtin Layer 6
Builtin Layer 7
User Layer 8 |Friendly |
User Layer 9 'Enemy |
User Layer 10 |Detector |
User Layer 11 ‘wall |
User Layer 12 |PlayerBlocker |
User Layer 13 Poweru
IUser Layer 14 [WallDetector—]

Next, open the Physics settings by selecting Edit \ Project Settings \ Physics in the
top menu. Check the boxes to make WallDetector collide only with Walls and
PlayerBlocker.

K

0122137 [eM

Default |
TransparentFX [_|
Ignore Raycast[_|

Water [

vl

Friendly [|
Enemy ||
Detector ||

wall ¥
PlayerBlocker v/
Powerup ||
WallDetector [_|

Select the Front, Far and Near in the Hierarchy and set their layers to WallDetector.
This completes the collider assembly!

© Inspector
& [Front | [Istatic «
Tag | Untagged + |JLayer | WallDetector +

© Inspector
¥ [Far | [JStatic +

Tag | Untagged 4 ||Layer| WallDetector

© Inspector
[+ [Near | [static +

Tag [Untagged + ||Layer | WallDetector

Set the Hero component’s Jump Collider in MyHero to the JumpColliders GameObject
you created earlier.

© inspector |

¥ MyHero | [static +

Tag [Hero 3] Layer[Friendly :]
b~ Transform @ =
v « ¥ Hero (Script) @ =
Script _ Hero o
Base Anim |== HeroAnimator (Animator) | Q

More Variables

| Jump Collider |« JumpColliders (JumpCollider)]_OI

Save the scene and the project and try to replicate the bug. No go, right?

K

-

Ker-smack! One bug squashed.

Sprite sandwich

One of the more unfortunate bugs occurs when an actor goes down near a trash can and
finds itself sandwiched between two layers of sprites.

- o
DN\ \\\\f

Although amusing, this is a noticeable fault In the game. Adjusting the box collider
when an actor is knocked down will address the underlying issue.

— NS
|

}\W&W
A~

4

Currently, it’s not approximating an actor lying down. A more appropriate
approximation is the box collider below:

N \m‘\\ A\
1 — ‘

However, when the robot gets back up, it should return to its proper, upright state.

1‘

1’&\\ \

) 59

A

iﬂ

To achieve this, you’ll need your own logic to change the box collider’s center and size
variables when an Actor is knocked down.

' ‘-‘Iu*"

Create a new C# script named ActorCollider.cs in the Scripts folder and open it.
Replace its contents with this:

using UnityEngine;

using System.Collections;

//1

[RequireComponent (typeof(BoxCollider))]
public class ActorCollider : MonoBehaviour {

//2
public Vector3 standingColliderCenter;
public Vector3 standingColliderSize;

public Vector3 downColliderCenter;
public Vector3 downColliderSize;

private BoxCollider actorCollider;

void Awake() {
actorCollider = GetComponent<BoxCollider> ();

I

//3
public void SetColliderStance(bool isStanding) {
if (isStanding) {
actorCollider.center = standingColliderCenter;
actorCollider.size= standingColliderSize;
} else {

actorCollider.center = downColliderCenter;
actorCollider.size= downColliderSize;
+
¥
}

The ActorCollider toggles its BoxCollider position and size by using the
SetColliderStance method.

1. The ActorCollider requires a BoxCollider component for it to work, which is
assigned by using the GetComponent<BoxCollider>() method in the Awake method.

2. The ActorCollider needs values for the BoxCollider’s center and size when the
Actor is standing or when it is knocked down. This is stored in the
standingColliderCenter, standingColliderSize, downColliderCenter and
downColliderSize variables.

3. The SetColliderStance assigns the appropriate values to the boxCollider when this
method is called. If the parameter isStanding is false, it uses the
downColliderCenter and downColliderSize values. Otherwise, the values of
standingColliderCenter and standingColliderSize are used.

Save the script and open Actor.cs. Add this below the audioSource variable:

protected ActorCollider actorCollider;

Your new reference to the ActorCollider will be attached as a component to any
GameObijects using the Actor class.

Append the following to the end of the Start method:

actorCollider = GetComponent<ActorCollider> ();
actorCollider.SetColliderStance (true);

Here you’re setting the reference to the sibling ActorCollider component using the
GetComponent<ActorCollider>() method. You’re also setting the initial stance to
standing by calling SetColliderStance with a value of true.

Next, add the following to the end of the Die method:
actorCollider.SetColliderStance (false);

This will adjust the ActorCollider to the down stance when the Die method is called.

Find this yield return statement in the KnockdownRoutine coroutine:

yield return new WaitForSeconds (1.0f);

K

Replace it with this:

actorCollider.SetColliderStance (false);
yield return new WaitForSeconds (1.0f);
actorCollider.SetColliderStance (true);

This will adjust the ActorCollider to the down stance before the coroutine pauses. Then,
when the actor finally gets back up, the ActorCollider is set to the standing stance
again.

Save the script and open Robot.cs. You might remember that you implemented an
override of the KnockdownRoutine in this class — you’ll need to add the ActorCollider
methods to it.

In the KnockdownRoutine coroutine, find this:
yield return new WaitForSeconds (2.0f);
Replace it with:

actorCollider.SetColliderStance (false);
yield return new WaitForSeconds (2.0f);
actorCollider.SetColliderStance (true);

That’s all you need to do to adjust the robot’s collider so it handles being knocked
down.

Save the script and return to Unity to add ActorCollider components to Actor instances.
Select MyHero in the Hierarchy and add an ActorCollider component to it. Set the
values like so:

» Standing Collider Center: (X:0, Y:1.2, Z:0)
» Standing Collider Size: (X:1, Y:2.4, Z:0.5)
e Down Collider Center: (X:-1, Y:0.5, Z:0)

e Down Collider Size: (X:2.4, Y:1, Z:0.5)

Beat ’Em Up Game Starter Kit Chapter 11: Audio and Final Touches

© Inspector
o [MyHero | [Istatic +
Tag|Hero i) Llayer|Friendy i)

iiii 31\ =il si|f =i si|f =i si|{ =i

Select the EnemyRobot prefab in the Prefabs folder and add an ActorCollider to it. Set
these values:

» Standing Collider Center: (X:0, Y:1.2, Z:0)
» Standing Collider Size: (X:1, Y:2.4, Z:0.6)
e Down Collider Center: (X:-0.6, Y:0.5, Z:0)
» Down Collider Size: (X:2.4, Y:1, Z:0.6)

© Inspector
9 (¥ [EnemyRobot | [Jstatic «
Tag|Untagged ¢ Layer|Enemy 3|

\; |
\T’j 1
Gl |
Gl f
Gl ?
G ‘
G
G
G
o
o

h raywenderlich.com 470

Move on to the EnemyBoss prefab from the same folder and add an ActorCollider to it.
Modify it as shown below:

« Standing Collider Center: (X:0, Y:1.2, Z:0)
» Standing Collider Size: (X:1, Y:2.4, Z:0.6)
e Down Collider Center: (X:-0.6, Y:0.5, Z:0)

e Down Collider Size: (X:2.4, Y:1, Z:0.6)

© Inspector

¥ EnemyBoss | CIstatic «
Tag [Untagged ¢ | Layer Friendly ;)
Prefab | Select | Revert [Apply |

» _~ Transform
» o [Boss (Script)

b v Enemy Al (Script)

» o ¥ Walker (Script)

» i ¥ Box Collider

» % Rigidbody

» [/ Nav Mesh Agent

»] ¥ Audio Source

¥ @ Actor Collider (Script)

Script + ActorCollider
Standing Collider Center X 0 | Y 1.2 Z0
Standing Collider Size X 1 Y 24 'Z 06
Down Collider Center X -0.6 'Y 05 'zo
Down Collider Size

=11 =) =i{ =il =i|f =i|{ =i|f =i =i
SL(8L|5L 8L[4L 5L (50|50 5L
b

Save the scene, save the project and click Play. Notice that when you knock enemies
down, their colliders adjust to the lying down state.

When they get back up, the collider reverts to the standing values.

K

7 N

This should prevent the knocked down actor sprites from getting tangled up with the
trash. Great job, the bug is now fixed. The game itself looks great! The main menu
needs some love too.

Main menu polishes

You could really do a lot to the MainMenu scene, but we will keep the scope for the
menu simple and impactful: fixing the sound effect cutoff bug when the player taps to
play, and adding a bit of pop to the text.

You already have a transition from the MainMenu scene to the Game scene but it will
not play the full sound effect whenever the game loads too fast. You might not notice it
at first, but it becomes apparent after you’ve played at least one time because the Game
scene is cached in memory to speed up loading.

An easy fix is to delay when the Game scene loads by a few seconds, allowing the blip
sound effect to play all the way through.

First, open the MainMenu scene from the Scenes folder.

Then open MainMenu.cs from the Scripts folder to modify the manner in which the
Game scene loads.

Add the following to the file:

using System.Collections;

This will enable the script to use Coroutines.

K

Add the following variable:

private Coroutine loadingRoutine;
This will hold a reference to the scene load coroutine.
Add this new method to the class:

private IEnumerator LoadGameScene(float delayDuration) {
yield return new WaitForSeconds (delayDuration);
GameManager.CurrentLevel = 0;
SceneManager.LoadScene("Game");

This coroutine will delay the loading of the scene by the duration of the parameter
delayDuration.

Replace the contents of the GoToGame method with this:
if (loadingRoutine == null) {

loadingRoutine = StartCoroutine (LoadGameScene (2.0f));

This new GoToGame code will load the Game scene after a 2-second delay, and if
(loadingRoutine == null) also prevents multiple calls to the LoadGameScene coroutine.

The sound bug should be squashed sufficiently now!

Next, to add a splash of polish to the main menu, you’ll make the “Touch To Start” text
flicker.

nﬁl-.-lﬁﬁnl"n"-'l'l'! nﬁl-.-ll‘u'!nl'u“'l'ﬁ r'l"vl-.-ll"u'lnl"u"-'l'l'"

Touch to Start Touch to Start

Create a new C# script in the Scripts folder and name it ImageFlicker.cs. Replace its
contents with this code block:

using UnityEngine;

//1

using UnityEngine.UI;
using System.Collections;

//2
[RequireComponent (typeof(Image))]
public class ImageFlicker : MonoBehaviour {

//3

K

private bool isShown = true;
public float flickerDelay = 0.3f;
private Image image;

//4
void Start () {
image = GetComponent<Image> ();
InvokeRepeating ("ToggleImage", flickerDelay, flickerDelay);

//5

void ToggleImage() {
image.enabled = isShown;
isShown = !isShown;

I

The ImageFlicker class flickers the Image component to which it is assigned.

1.
2.

The UnityEngine.UI namespace is here so you can access the Image component.
ImageFlicker requires an image that will flicker.

Declare the variables of the ImageFlicker here, most notably a flickerDelay
variable that holds the flicker speed.

Use the GetComponent<Image>() method to assign the image. InvokeRepeating
behaves like a coroutine, except that this method calls ToggleImage for every
flickerDelay duration forever, or until the Invoke is cancelled.

That finishes up this script. Save it and return to Unity.

Select the TouchToStart child of Canvas and add an ImageFlicker component to it.

© Inspector | 52 Navigation &=

4@ ¥ TouchToStart [Istatic «

e Tag | Untagged + | Layer| ul $

» 55 Rect Transform @ = %
(@ canvas Renderer @ ' %

» "4 (¥ Image (Script) @ = %

v o [Image Flicker (Script) @ = %
Script ImageFlicker (o]
Flicker Delay 0.3

Save the scene and the project and click Play. You should notice now that the “Touch
To Start” text flickers. Also, when you start the game, the initial blip sound effect plays
for a full two seconds before the game loads the Game scene.

Wow, PompaDroid is looking great! The game is essentially finished.

K

You can start it from the main menu and play through the whole game without having
to stop and tinker with anything. When the enemy gets too strong and you lose, don’t
worry, just return to the main menu and start again. Play as many times as you like!

Put away your polishing rags and puff your pompadour, friend! You made a lot of little
changes and your game is almost ready to ship. In this chapter, you:

Added background music and sound effects.

Added intro and outro text, along with a splash screen at loading.

Squashed a bunch of bugs...ker-splat!

Polished a few things here and there to add quality to the final product.

Up next, you’ll deploy the game to smartphones and tablets. Get ready to enjoy
PompaDroid on mobile devices!

Unity offers a plethora of build targets, ranging from desktop platforms (Windows, OSX,
Linux, etc.) to consoles (PS4, Xbox One, Nintendo Switch, etc.) to mobile (i0S, Android,
etc.). No wonder so many developers build games on Unity!

In this chapter, the main focus will be creating a working build that will run on both iOS
and Android. Both mobile platforms are extremely popular. As a matter of fact, together
they have 98% of the mobile market share.

You’ll do the following in this chapter:
» Add code to support the back button.
» Set up an Android build and run the game on an Android device.

» Set up an iOS build, create an Xcode Project and run the game on an iOS device.

Prerequisites: To complete all the steps in this chapter, as written, you’ll need:
An Android device and an iOS device, a Mac running the latest version of Xcode,
and an Apple developer account, which is required to build to a device

If you do not have a Mac, you won’t be able to build the game for iOS. But it’s very
similar to building for Android, so you’re not really losing out. If you’re lacking
devices, go ahead and use simulators so you can learn the process — you can
always do it again when you have devices.

Time to build!

Android, a Java-based operating system (OS) for mobile phones dominates the global
market, making it the most popular mobile OS. It also has an adorable robot for a
mascot:

Android releases new versions periodically, usually with names that sound better suited
to late-night munchies than some OS. At the time of writing, the latest version is
Android 8.0 Oreo. PompaDroid will support Android 4.0 Ice Cream Sandwich through
Android 8.0 Oreo.

You can create an Android project from Unity running on macOS or Windows. Each OS
has slightly different labels for some of next steps, but the process is similar.

Before running on a smartphone, you’ll first implement the Back button for Android.

The back button returns the user to the previous screen, for example, backing out of
menus, or going back to the previous view in an app, etc.

You want it so that when the player is on the main menu, pressing Back exits the game.
And when the game is running in the game scene, the back button leads to the main
menu.

Start by opening MainMenu.cs. Add the following Update method:

void Update() {
if (Input.GetKeyDown(KeyCode.Escape)) {
Application.Quit();

}

The code uses the Update method to detect a key press from the Input class.

Specifically, it checks if the player pressed the KeyCode.Escape key — the equivalent to
the back button on Android. If true, the game receives a signal to quit using the
Application.Quit() line.

K

Save the script and open GameManager.cs. Insert the following code at the end of the
Update method.

if (Input.GetKeyDown(KeyCode.Escape)) {
//1
SceneManager.LoadScene("MainMenu");

}

This code block is similar to the code added in the MainMenu class, except the back
button loads the MainMenu scene.

Save the script and return to Unity. Click Play to run the game. Press the Esc button on
your keyboard to simulate the back button. The game should return to the main menu
while in a level and close when from the main menu.

Great, the game is now ready to build for Android. Next up is setting up your Android
software development kit (SDK).

To create Android builds for PompaDroid, you’ll need:

The latest version of Unity with the Android Module installed.

Java Development Kit (JDK)

Android Command Line Tools.

An Android device, running Android 4.0 (Ice Cream Sandwich) or later.

Download the Java Development Kit and install it in your system. (http://
www.oracle.com/technetwork/java/javase/downloads/index.html) [http://
www.oracle.com/technetwork/java/javase/downloads/index.html].

Once installed, tell Unity where to find the JDK by going to Unity \ Preferences from
the top menu if on macOS or Edit \ Preferences on Windows. Set the JDK path in the
External Tools tab to where the JDK is installed.

Go to this website to install Android command line tools: (http://
developer.android.com/sdk/index.html)[http://developer.android.com/sdk/index.html].
You do not need to download Android Studio to create a build for Android, just the
Android SDK.

K

Extract the ZIP file to a location of your choosing. Go to that location. Open the tools
folder then open the file named android to display the Android SDK Manager

window.
[XoN) Android SDK Manager
SDK Path:
Packages
1! Name API Rev. Status
v Tools
-#* Android SDK Tools 25.2.3 [Update available: rev. 25.2.:
++ Android SDK Platform-tools 25.0.3 Not installed
Android SDK Build-tools 25.0.2 || Not installed
Android SDK Build-tools 25.0.1 Not installed
Android SDK Build-tools 25 Not installed
Android SDK Build-tools 24.0.3 Not installed
Android SDK Build-tools 2402 Not installed
Android SDK Build-tools 24.01 Not installed
Android SDK Build-tools 24 Not installed
Android SDK Build-tools 23.0.3 | Not installed
Android SDK Build-tools 2302 Not installed
Android SDK Build-tools 23.01

Android SDK Build-tools

4 Android SD

K Build-too
Android SDK Build-tools 20
Android SDK Build-tools 191
v [Android 7.1.1 (APl 25)
'R SDK Platform 25 3
[Andiroid TV Intel x86 Atom Svstem Imaae 25 2
¥ Android Wear ARM EABI v7a Svstem Imaae 25 1
" Android Wear Intel x86 Atom Svstem Imaae 25 1]
" Gooale APIs Intel x86 Atom 64 Svstem Image 25 3

Show: [Updates/New [Installed Select New or Updates

Obsolete Deselect All

Done loading packages.

Not installed
Not installed

Not in eg
Not installed
Not installed

Not installed
Not installed
Not installed
Not installed
Not installed

Install 4 packages...

Delete 1 package...

O

Gather the tools you need from the Tools tab: check Android SDK Tools, Android

SDK Platform-tools and Android SDK Build-tools.

Next up, you’ll download the SDK for the desired Android version.

» 2 Android 7.1.1 (API 25)
» .2 Android 7.0 (API 24)

» .2 Android 6.0 (API 23)
»[[2 Android 5.1.1 (APl 22)
» 2 Android 5.0.1 (API 21)
» .2 Android 4.4W.2 (API 20)
» 2 Android 4.4.2 (API 19)
» .2 Android 4.3.1 (API 18)
» .2 Android 4.2.2 (API 17)
»[[2 Android 4.1.2 (API 16)
» [Android 4.0.3 (API 15)
» .2 Android 4.0 (API 14)

» 2 Android 3.2 (AP1 13)

» 2 Android 3.1 (AP1 12)
»[2 Android 3.0 (AP1 11)

» .2 Android 2.3.3 (AP1 10)
»[[2 Android 2.3.1 (API 9)
» 2 Android 2.2 (API 8)

» 2 Android 2.1 (API 7)

Uncheck all other components except the SDK Platform that matches your device —

this is simply to reduce the time you’re waiting for the download.

K

v [.2 Android 7.1.1 (API 25)
[.1 25 3 I Notinstalled |
¥ Android TV Intel x86 Atom Svstem Imaae 25 2 Not installed
(¥ Android Wear ARM EABI v7a Svstem Imace 25 1 | Not installed
['¥ Android Wear Intel x86 Atom Svstem Imaae 25 1 | Not installed
¥ Gooale APIs Intel x86 Atom 64 Svstem Image 25 3 | Not installed
¥ Gooale APIs Intel x86 Atom Svstem Imaae 25 3 Not installed
L1 Sources for Android SDK 25 1 Not installed

Click the Install X packages... button at the bottom-right corner of the SDK manager
window.

[JoN) Android SDK Manager
SDK Path:
Packages
' Name API Rev. Status
v _Tools
4 Android SDK Tools 25.2.3 [Update available: rev. 25.2.:
" Android SDK Platform-tools 25.0.3 Not installed
+" Android SDK Build-tools 25.0.2 || Not installed
+" Android SDK Build-tools 25.0.1 [_| Not installed
+" Android SDK Build-tools 25 Not installed
+" Android SDK Build-tools 24.0.3 Not installed
+" Android SDK Build-tools 24.0.2 || Not installed
+" Android SDK Build-tools 24.0.1 || Not installed
+" Android SDK Build-tools 24 Not installed
" Android SDK Build-tools 23.0.3 | Not installed
+" Android SDK Build-tools 23.0.2 || Not installed
+" Android SDK Build-tools 23.01 Not installed
<" Android SDK Bu 22.0.1 || Not installed

< Ap K Not ipstalled
+" Android SDK Build-tools 20 I Not installed
" Android SDK Build-tools 19.1 Not installed
v[2Android 7.1.1 (API 25)
'R SDK Platform 25 3 [INot installed
[Andiroid TV Intel x86 Atom Svstem Imaae 25 2 [_INot installed
["¥ Android Wear ARM EABI v7a Svstem Image 25 1 Not installed
["8 Android Wear Intel x86 Atom Svstem Imaae 25 1 I Not installed
['¥ Gooale APIs Intel x86 Atom 64 Svstem Image 25 3 [INot installed

Show: Updates/New Installed Select New or Updates

Obsolete Deselect All Delete 1 package...

M =

Done loading packages.

Accept the licenses for all packages.

® 0 Choose Packages to Install
Packages Package Description & License
¥ +/ Android SDK License Package Description

Android SDK Tools, revision 25.2.4
+/ Android SDK Platform-tools, revision 25.0.3 [*]
+ Android SDK Build-tools, revision 25.0.2 This update will replace revision 25.2.3 with revision 25.2.4.
+/ SDK Platform Android 7.1.1, API 25, revision 3
Dependencies
Installing this package also requires installing:
- Android SDK Platform-tools, revision 25.0.3

Archive Description

Archive for MacOS X

Size: 191.2 MiB

SHA1: f4d3a96a9ff61d44c36f385148c8b7ff66bd83bc

License
Terms and Conditions

Accept | | Reject Copy to clipboard | Print Accept License

[*] Something depends on this package Cancel

K

Once you have accepted, just walk away and let the download happen. Go for a quick
walk or something!

Building for Android

Welcome back. If your download is done, you’re ready to make Android builds!

Import Gamelcon.unitypackage from the Unity Packages folder into the project — it
contains the game icon sprite.

O (@] Import Unity Package

Gamelcon

v ¥ G5 Images
lmilgameicon.png NEW |

| Al || None | | cancel || Import |

The icon is simply the hero sprite on a blue background.

Select Unity \ Preferences from the top menu if on macOS or Edit \ Preferences on
Windows. Select the External Tools tab.

In the Android section, click the top Browse button next to the SDK field and navigate
to the folder where you extracted the command line tools.

Beat ’Em Up Game Starter Kit Chapter 12: Running on Mobile Devices

General

External Tools

Cache Server

Close the Preferences window and open Build Settings by selecting File \ Build
Settings from the top menu. Select Android in the list and click the Switch Platform
button.

n raywenderlich.com 482

Beat ’Em Up Game Starter Kit Chapter 12: Running on Mobile Devices

& PC, Mac & Linux Standalone €3}

Android

(Gradle 3]
D Refresh

@y vos

"\ Xbox One

.
3

m l Xiaomi Mi Game Center

This will re-import all assets to the game, since each platform has unique specifications
for asset compression protocols.

Once re-importing is finished, select Player Settings in the Build Settings window to
open PompaDroid’s settings.

u raywenderlich.com 483

Beat ’Em Up Game Starter Kit Chapter 12: Running on Mobile Devices

& PC, Mac & Linux Standalone €3}

(Gradle 3]
D Refresh

@y vos

"\ Xbox One

i
!

m l Xiaomi Mi Game Center

First, you’ll need to assign a new, unique bundle identifier for your project. Bundle
identifiers typically follow this format:

com.<COMPANY NAME>.<PRODUCT NAME>

In the PlayerSettings, set Company Name to Beat-em-up Book, Product Name to
Pompadroid, and select gameicon as the Default Icon.

h raywenderlich.com 484

© Inspector

i| ,;:; PlayerSettings

Company Name [Beat-em-up Book
Product Name ' Pompadroid

Default Icon

Default Cursor

Cursor Hotspot X 0 'Y o0

Next, in the Resolution and Presentation settings for Android, set Default
Orientation to Auto Rotation, uncheck Portrait and Portrait Upside Down but keep
both Landscape Right and Landscape Left checked. This game should only run in
landscape, but it should support both variants.

L3 | Q | Ld

Settings for Android

Icon

Resolution and Presentation
Preserve framebuffer alpha [_|
Resolution Scaling

Resolution Scaling Mode | Disabled

Blit Type [Always |
Supported Aspect Ratio
Aspect Ratio Mode | Native Aspect Ratio &
Orientation
Default Orientation* | Auto Rotation ™
Allowed Orientations for Auto Rotation

Portrait -

Portrait Upside Down [_J

Landscape Right 4

Landscape Left

Use 32-bit Display Buffer* ¥
Disable Depth and Stencil* []
Show Loading Indicator | Don't Show

-
)

* Shared setting between multiple platforms.

In the Other Settings tab, set Bundle Identifier to com.beatemup.pompadroid or
any bundle ID of your choice.

Note: It’s important that this is a unique identifier, so apps on your Android
device are not in conflict with each other.

For demonstration purposes, this project will use the bundle identifier
com.beatemup.pompadroid, but feel free to use your own Bundle Identifier
when building for your own use.

Set the Minimum Version to the lowest version you want to support. In the following
example, the device is running on Android 5.0, so that’s what I’ve chosen.

Other Settings

Rendering

I Color Space* | Gamma

Auto Graphics API 4
Multithreaded Rendering* &
Static Batching ¥4
Dynamic Batching 4
GPU Skinning* [
Graphics Jobs (Experimental |

Virtual Reality moved to XR Settings

Protect Graphics Memory [|

Identification

I Package Name !com‘beatemup.pompadroidl I

Version* 0.1
Bundle Version Code 1

I Minimum API Level | Android 4.1 ‘Jelly Bean’ (APl level 3
Target API Level | Automatic (highest installed) 3

Configuration

Scripting Runtime Version* | Stable (.NET 3.5 Equivalent)

Scripting Backend | Mono

Api Compatibility Level* | .NET 2.0 Subset

C++ Compiler Configuratic| Release
Mute Other Audio Sources*[_|
Disable HW Statistics

Target Architectures

ARMv7 4
ARM64 (Experimental)
x86 4

Okay, you're set to run on Android. Save the project and open the Game scene. Enable
Use Ul for MyGameManager so the game can use touch controls.

K

= Hierarchy & -=| © Inspector | a =
| Create | (orAll @ ¥ MyGameManager [Jstatic «
v &) Game* "= 17" Tag [Untagged 4 | Layer| Default ™™
b~ Transform R
» UiCanvas » & [¥ Game Manager (Script) S
EventSystem v « [+ Input Handler (Script) =
» ControlCanvas Script InputHandler o
WorldCanvas Max Jump Duration 0.2
GamgAudioManager I Use Ul] I
P LoadingScreen

Save the scene and the project.

Setting up a test device

Your next step is setting up a test device, which you need to do before creating a build.

Up first is enabling Developer Options on your Android device, if you haven’t already.
Follow these steps:

1. Onyour Android device, navigate to Settings \ About Phone or Settings \ About
Tablet.

2. Scroll to Build Number and tap it seven times. A toast message will appear,
confirming that you are now a developer. The exact location of the Build Number
entry varies from device to device but should be around the About Phone or About
Tablet settings.

3. Navigate to Settings \ Developer options \ Debugging and check enable USB
debugging.

Your device is now ready to receive an Android build! Plug it in to the computer.

Build and run

In the editor, open Build Settings again and make sure that MainMenu scene and
Game scene are included in the build. Also, make sure that the target platform is
Android.

Click the Build and Run button and set a suitable location for the Android Application
Package (APK).

Hurry up and wait for the build and copy process to complete — now is a fine time to
break away and do something besides stare at a screen.

Build and run: there’s another way

Check for the game on your device. It should be there, but if not or it’s not working
right, there is an alternative approach.

Click the Build button and locate a suitable place to save your APK.

[] [] Build Settings
Scenes In Build
¥ Scenes /MainMenu 0
¥ Scenes /Game A
Add Open Scenes
Platform
A =
@, PC, Mac & Linux Standalone Android
B o Texture Compression
ETC2 fallback
¢ Android 2 | suiasystem
. Export Project O
@ty vos Run Device Fetching connecte | _Refresh
Development Build O
@ Xbox One Autoconnect Profiler
Script Debugging
PS Vita Scripts Only Build
Compression Method
=Jra Ps4 SDKs for App Stores
W
E WebGL m I Xiaomi Mi Game Center Add
L h(Learn about Unity Cloud Build
| Switch Platform |[_Player Settings... | I[Build)| BuildAndRun |

Transfer the APK file to your device and install it by locating it in a file manager and
tapping it.

PompaDroid should definitely be there now.

Play on, dear reader. Play on! It should be the same with the exception of the
touchscreen controls. Tap the back button on the device while you’re playing. Tap it
again to test if it exits the game.

Congratulations! If you’ve never built a game before, this has to be a pretty special
moment. You did it! That is indeed PompaDroid running on Android!

Next up, assuming you have the hardware available, you’ll build out the game for iOS so
it can run on iPhones and iPads.

Beat ’Em Up Game Starter Kit Chapter 12: Running on Mobile Devices

Note: If you don’t have a Mac, you’re done!! You made it! Congratulations! I think
you should literally do a happy dance right now. But if you have a Mac and want to
put this awesome game on your iPhone, keep reading. And stop dancing — you’ve
got work to do!

Running on iOS

iOS is the second-most popular OS in terms of market share, so building for this
platform is a worthwhile endeavor.

Creating a build for iOS works quite differently from Android. It is a two-step process.
1. Create an Xcode Project

2. Build the game from Xcode

Pompadroid
Unity Project
Android
Device

For better or for worse, iOS has no back button. However, there is no need to remove the
code that supports the Android back button.

The latest stable version of iOS at the time of writing is iOS 11. This book supports i0OS
versions 9, 10, and 11.

Older devices running iOS 7 or 8 should still be able to run the current project.

To create a build for iOS, and actually load it to your device, you’ll need an Apple
developer account. If you’re not, you will be able to simulate it on your screen, at least.

h raywenderlich.com 489

Here are the other requirements for building PompaDroid on iOS:

» The latest version of Unity, along with the iOS Module installed.

e Xcode 9, along with a computer running macOS 10.12.6 (Sierra) or later.
* AniOS device running iOS 9 or later.

» An Apple developer account.

Import the Gamelcon.unitypackage from the Unity Packages folder into the project
to add the game icon sprite to the project.

® 0 Import Unity Package

Gamelcon

v &l Images
|l gameicon.png NEW |

| Al || None | | cancel || Import |

As it was before, the icon is simply the hero sprite on a blue background.

Open the Build Settings by selecting File \ Build Settings from the top menu. Select
iOS from the list on the bottom-left and click the Switch Platform button to switch to
iOS.

Beat ’Em Up Game Starter Kit Chapter 12: Running on Mobile Devices

(#%; PC, Mac & Linux Standalone -~ b

0

This will re-import all assets in the game, since each platform has different
requirements for compression.

Once that is done, select Player Settings in the Build Settings window to open the
settings of PompaDroid.

(£% PC, Mac & Linux Standalone SN ==

(Release __________ +]
[]
[]
(Default 3]

n raywenderlich.com 491

First, you’ll need to assign a unique Bundle Identifier for your project. Bundle
Identifiers usually use the following format:

com.<COMPANY NAME>.<PRODUCT NAME>

In the Other Settings tab, set Color Space to Gamma, Bundle Identifier to
com.beatemup.pompadroid or any bundle ID of your choosing. Leave the other
settings to their default values.

Other Settings
Rendering
Color Space* | Gamma
Auto Graphics API v

Color Gamut*

— sRGB

+. -—
Metal Editor Support* v
Metal APl Validation* v

Metal Restricted Backbuffer [|
Force hard shadows on Met|_|
Multithreaded Rendering
Static Batching ¥4
Dynamic Batching v
GPU Skinning* o
Graphics Jobs (Experimental |
Virtual Reality moved to XR Settings
Identification

Bundle Identifier |com.beatemup/pompadroid |I
Version™® 0.1
Build 0

Signing Team ID
Automatically Sign v

Note: Unique is a critical requirement for a bundle identifier because it ensures
apps on your iOS device are never in conflict.

For demonstration purposes, this project will use the bundle identifier
com.beatemup.pompadroid, but feel free to use your own Bundle Identifier.

In the PlayerSettings, set Company Name to Beat-em-up Book, Product Name to
Pompadroid and select gameicon as the Default Icon.

© Inspector |
. PlayerSettings

Company Name 'Beat-em-up Book
Product Name 'Pompadroid

Default Icon

Default Cursor

Cursor Hotspot X 0 'Y 0

Next, in the Resolution and Presentation settings for iOS, set Default Orientation to
Auto Rotation, uncheck Portrait and Portrait Upside Down and keep Landscape
Right and Landscape Left checked. This game will run in both landscape mode
variants but not in portrait mode.

Resolution and Presentation

Resolution Scaling
Resolution Scaling Mode | Disabled

-

Orientation

-

I Default Orientation* | Auto Rotation
Use Animated Autorotation ¥

Allowed Orientations for Auto Rotation

Portrait o
Portrait Upside Down [_|
Landscape Right v
Landscape Left 4
Multitasking Support
Requires Fullscreen
Status Bar
Status Bar Hidden
Status Bar Style | Default &l

Disable Depth and Stencil* | |
Show Loading Indicator | Don’t Show

-

* Shared setting between multiple platforms.

Okay, you should be able to run the app on iOS. Save the project and open the Game
scene. Make sure that MyGameManager > Use Ul is enabled so the game can use the
touch controls.

= Hierarchy ® = © Inspector I &=
| Create | (AT G ¥ 'MyGameManager [_static «
v & Game* = Tag | L d 4+ | Layer| Default 3|
_> Manauer » .~ Transform @ = %
» UlCanvas » & |¥ Game Manager (Script) a3
EventSystem v « ¥ Input Handler (Script) s
» ControlCanvas Script InputHandler ©
WorldCanvas Max Jump Duration 0.2
GameAudioManager I Use UI m
P LoadingScreen

Save the scene and the project. Open Build Settings and make sure that the

MainMenu and Game scenes are part of the build. Confirm that the target platform is

iOS.

Select Build and map to a location to save the project.

Scenes In Build
Ekenes/MainMenu 0
|V Scenes/Game 1
Add Open Scenes
Platform
a
&, PC, Mac & Linux Standalone = i0s
Run in Xcode
Run in Xcode a5
a Android Symlink Unity libraries O
Development Build O
@ty vos Autoconnect Profiler -
Script Debugging -
@ Xbox One Scripts Only Build -
PS Vita
I Compression Method
W
E WebGL
_1 M Learn about Unity Cloud Build
[Sswitch Platform [[Player Settings...] I[Build]l Build And Run]

Click Save and standby for the build progress to complete. Now might be a good time
for another quick break!

Once complete, open the Unity-iPhone.xcodeproj file that was generated to open
Xcode.

If needed, sign into your developer account within Xcode. To do this, select Xcode \
Preferences then select the Accounts tab.

Plug your iOS device into the computer. Select Unity-iPhone at the top-left corner and
select your plugged-in test device.

K

e0e p Processing symbol files 1 =\ ©® &0 B T

B2 QAN © = @ [8< [E Unity-iPnone <o 0D ®
» (] Unity-iPhone || General I

PROJECT

uild Settings Build Phases Build Rules. Identity and Type

Name | Unity-iPhone

[unity-iPhone

build/SharedPrecompiledHeaders
TARGETS
Full Path [Users/NathanSimbahan/

Click the Play button on the top-left and hold while the build finishes.
[] .IE & unity-iPhone) |

@ < OB O
Unity-iPhone <o ®

identity and Type

]

Pad Indexing | Processing files

BR QAo =op &

» (5] Unity-iPhone

Tecla's
8 < B
-

Holy coding, Batman! PompaDroid is running on your iOS device! Savor this moment.
It’s beautiful, just beautiful.

Where to go from here?

In this chapter, you’ve:

o Implemented support for Android’s back button.
 Built and tested the game on an Android device.
» Built and tested the game on an iOS device.

Huge congratulations are in order. You’ve managed to create your first beat ‘em up
game! You started out with a blank project and now have a game that runs in the palms
of your hands. I hope you feel accomplished, because that was no easy feat!

Although this book and all the assets made your task easier, it was still you who put in
the time, and now you have gained a ton of knowledge about what actually goes into
building a game on Unity. Your life will never be the same!

Turn the page to explore potential next steps for this game.

lix: GridSnapper

The GridSnapper class performs multiple tasks that ultimately help you create a
tilemap for the game:

It draws a helpful grid on the scene view.
It snaps all attached child tile GameObjects to the grid.
It creates the optimized mesh for the tilemap you are creating.

Let’s take a closer look at it and learn more about what it does.

using UnityEngine;

//1
[ExecuteInEditMode]
public class GridSnapper : MonoBehaviour {

//2
public string filename;
public bool autoSnapping;

public Color gridColor = Color.white;

//3
public void OnDrawGizmos() {

float scale = 1000;

int columns = 100;

int rows = 100;

Vector2 offset = new Vector2(0.5f, 0.5f);
Gizmos.color = gridColor;

for (int j = —rows; j < rows; j++) {

Vector3 min = new Vector3(scale + offset.x, j + offset.y, 0);
Vector3 max = new Vector3(-scale + offset.x, j + offset.y, 0);

h raywenderlich.com 496

min
max

transform.TransformPoint (min) ;
transform. TransformPoint (max) ;

Gizmos.DrawLine(min, max);

for (int i = —columns; i < columns; i++) {

Vector3 min
Vector3 max

= new Vector3(i + offset.x, +scale + offset.y, 0);
= new Vector3(i + offset.x, —-scale + offset.y, 0);
min
max

transform.TransformPoint(min);
transform.TransformPoint (max) ;

Gizmos.DrawLine(min, max);

b
}
by

Quite a bit going on in there — here is what happens in each section.

1. The class has the ExecuteInEditMode attribute, which allows the MonoBehaviour to
run in edit mode. This is necessary because the class needs to help design the level
while not currently playing the game.

2. The class has three variables, a filename, an auto-snap flag and the color of the grid
you want to display on screen.

3. This code block performs the first task of the GridSnapper. It implements the
OnDrawGizmos method. It traverses all integers within a certain range going vertical
and horizontal and draws lines on them. Tadaaaaa! What you have in the end is a
grid.

In the next code block, you perform the second task of snapping child objects to a grid.

//1
void Update() {
if (autoSnapping) {
SnapChildren();

}
//2
public void SnapChildren() {
foreach (Transform child in transform) {

//do the snapping;
Vector3 pos = child.localPosition;

pos.x = Mathf.RoundToInt(pos.x);
pos.y = Mathf.RoundToInt(pos.y);
pos.z = Mathf.RoundToInt(pos.z);

child. localPosition = pos;

b
}

Here’s what is happening in there:

1. Since the class now runs in edit mode, the Update method checks if the
autoSnapping is enabled. If true, it calls the SnapChildren method.

2. The SnapChildren method iterates through all child Transforms of the GridSnapper
and rounds its X, Y, and Z localPosition to the nearest integer, thereby snapping the
object to the grid.

Finally, you create the optimized mesh in the following block:

public Mesh MakeMesh() {
Mesh mesh = new Mesh();

int polygons = transform.childCount;

Vector3[] vertices = new Vector3[polygons * 4];
Vector2[] uvs = new Vector2[polygons *x 4];
int[] tris = new int[6 * polygons];

for (int i = @; i < polygons; i++) {
SpriteRenderer spriteRenderer =
transform.GetChild(i).GetComponent<SpriteRenderer>();

vertices[i x 4 + @] = spriteRenderer.transform.localPosition +
(Vector3)spriteRenderer.sprite.vertices[3];

vertices[i *x 4 + 1] = spriteRenderer.transform.localPosition +
(Vector3)spriteRenderer.sprite.vertices[1];

vertices[i * 4 + 2] = spriteRenderer.transform.localPosition +
(Vector3)spriteRenderer.sprite.vertices|[0];

vertices[i x 4 + 3] = spriteRenderer.transform.localPosition +
(Vector3)spriteRenderer.sprite.vertices[2];

uvs[i x 4 + 0] = spriteRenderer.sprite.uv[3];
uvs[i x 4 + 1] = spriteRenderer.sprite.uv[1];
uvs[i *x 4 + 2] = spriteRenderer.sprite.uv[0];
uvs[i * 4 + 3] = spriteRenderer.sprite.uv[2];
tris[i x 6 + 0] = (i * 4) + 0;
tris[i x 6 + 1] = (i x 4) + 2;
tris[i x 6 + 2] = (1 x 4) + 1;
tris[i x 6 + 3] = (1 *x 4) + 2;
tris[i *x 6 + 4] = (1 x 4) + 3;
tris[i x 6 + 5] = (1 * 4) + 1;
¥

mesh.vertices = vertices;
mesh.uv = uvs;
mesh.triangles = tris;

mesh.RecalculateNormals();
mesh.RecalculateBounds();

return mesh;

¥

The MakeMesh method combines all the child Transforms of the GridSnapper into a
single Mesh. It performs all allocations for the number of vertices, UVs and triangles
based on the number of children. It also populates it by using the values of each child
transform.

And that’s it! That’s how the GridSnapper works its magic. Pretty cool, right?

onclusion

Whew! It’s been a long journey, but you made it. You’ve built PompaDroid from scratch,
creating all the classes and components for yourself. Not only that, you know your way
around Unity.

The real prize here is that you’ve created a framework upon which you can continue to
build and learn by adding more features to the game.

Here are a few ideas to get you started:

» Create a varying decision-making Al using the EnemyAI class. All you’d need to do
is play around with the weights for each possible action for a given situation.

» Create a bigger world by making more tiled map level prefabs and adding more
LevelData Scriptable Objects to the game.

* Add more EnemyTypes, more Powerups, more breakable objects — more of
everything, really!

And if I were going to keep going, I’d toy around with these ideas:

o Create more actions—for example, a double-tap up or down to make the hero jump
tiles quickly.

+ Create character and level selection screens.

» Give the player multiple lives and access to objects that restore hit points.
o Challenge the hero by allowing some droids to self-heal.

» More power-ups and bigger, badder bosses.

¢ Music and sound effects to suit my taste.

h raywenderlich.com 500

On behalf of the book team, I’d like to say that it has been our pleasure to create this
starter kit for you, and we thank you once again for picking up this book! Your support
is what allows the team behind raywenderlich.com to perpetually produce useful,
timely, and relevant tutorials of all kinds, and for that opportunity, we are truly grateful.
Couldn’t do it without you!

— Nathan, Maria Gelyn, Eric, Allen, and Wendy

s You Might

We hope you enjoyed this book! If you’re looking for more, we have a whole library of
books waiting for you at https://store.raywenderlich.com.

New to iOS or Swift?

Learn how to develop iOS apps in Swift with our classic, beginner editions.

iOS Apprentice

https://store.raywenderlich.com/products/ios-apprentice

1I0S &
Apprenhce . .

SIXTH EDITION

h raywenderlich.com 502

The i0OS Apprentice is a series of epic-length tutorials for beginners where you’ll learn
how to build 4 complete apps from scratch.

Each new app will be a little more advanced than the one before, and together they
cover everything you need to know to make your own apps. By the end of the series
you’ll be experienced enough to turn your ideas into real apps that you can sell on the
App Store.

These tutorials have easy to follow step-by-step instructions, and consist of more than
900 pages and 500 illustrations! You also get full source code, image files, and other
resources you can re-use for your own projects.

Swift Apprentice

https://store.raywenderlich.com/products/swift-apprentice

Apprentice

THIRD EDITION
Beginning programming with Swift 4

Team

This is a book for complete beginners to Apple’s brand new programming language —
Swift 4.

Everything can be done in a playground, so you can stay focused on the core Swift 4
language concepts like classes, protocols, and generics.

This is a sister book to the iOS Apprentice; the iOS Apprentice focuses on making apps,
while Swift Apprentice focuses on the Swift 4 language itself.

K

Experienced iOS developer?

Level up your development skills with a deep dive into our many intermediate to
advanced editions.

Data Structures and Algorithms in Swift

https://store.raywenderlich.com/products/data-structures-and-algorithms-in-swift

Data Structures
& Algorithms in Swit

FIRST EDITION

data structures with Swift 4

Understanding how data structures and algorithms work in code is crucial for creating
efficient and scalable apps. Swift’s Standard Library has a small set of general purpose
collection types, yet they definitely don’t cover every case!

In Data Structures and Algorithms in Swift, you’ll learn how to implement the most
popular and useful data structures, and when and why you should use one particular
datastructure or algorithm over another. This set of basic data structures and
algorithms will serve as an excellent foundation for building more complex and special-
purpose constructs. As well, the high-level expressiveness of Swift makes it an ideal
choice for learning these core concepts without sacrificing performance.

K

Realm: Building Modern Swift Apps with Realm Database

https://store.raywenderlich.com/products/realm-building-modern-swift-apps-with-

realm-database

Bullding Modern Swift Apps
with Realm Database

FIRST EDITION

Realm Platform is a relatively new commercial product which allows developers to
automatically synchronize data not only across Apple devices but also between any
combination of Android, iPhone, Windows, or macOS apps. Realm Platform allows you
to run the server software on your own infrastructure and keep your data in-house
which more often suits large enterprises. Alternatively you can use Realm Cloud which
runs a Platform for you and you start syncing data very quickly and only pay for what
you use.

In this book, you’ll take a deep dive into the Realm Database, learn how to set up your
first Realm database, see how to persist and read data, find out how to perform
migrations and more. In the last chapter of this book, you'll take a look at the
synchronization features of Realm Cloud to perform real-time sync of your data across
all devices.

Design Patterns by Tutorials

https://store.raywenderlich.com/products/design-patterns-by-tutorials

Design Patterns
py Tutorials

FIRST EDITION

Learning design patterns in Swift 4

Design patterns are incredibly useful, no matter what language or platform you develop
for. Using the right pattern for the right job can save you time, create less maintenance
work for your team and ultimately let you create more great things with less effort.
Every developer should absolutely know about design patterns, and how and when to
apply them. That's what you're going to learn in this book!

Move from the basic building blocks of patterns such as MVC, Delegate and Strategy,
into more advanced patterns such as the Factory, Prototype and Multicast Delegate
pattern, and finish off with some less-common but still incredibly useful patterns
including Flyweight, Command and Chain of Responsibility.

Server Side Swift with Vapor

https://store.raywenderlich.com/products/server-side-swift-with-vapor

Server Side Swift with

Vapor

FIRST EDITION
Building Web APIs and Web Apps in Swilt

wanderlics
y No

If you’re a beginner to web development, but have worked with Swift for some time,
you’ll find it’s easy to create robust, fully-featured web apps and web APIs with Vapor 3.

Whether you’re looking to create a backend for your iOS app, or want to create fully-
featured web apps, Vapor is the perfect platform for you.

This book starts with the basics of web development and introduces the basics of Vapor;
it then walks you through creating APIs and web backends; creating and configuring
databases; deploying to Heroku, AWS, or Docker; testing your creations and morel

iOS 11 by Tutorials

https://store.raywenderlich.com/products/ios-11-by-tutorials

oy Tutorials

FIRST EDITION
Learning the new iOS APls with Swift 4

By the raywenderlich.com Tutorial Team

Jawwad Ahmad, Jerry Beers, Michael Ciurus, Richard Critz
Mike Katz, Andy Pereira, Mic Pringle & Jeff Rames

This book is for intermediate iOS developers who already know the basics of iOS and
Swift development but want to learn the new APIs introduced in iOS 11.

Discover the new features for developers in iOS 11, such as ARKit, Core ML, Vision, drag
& drop, document browsing, the new changes in Xcode 9 and Swift 4 — and much, much
more.

Advanced Debugging and Reverse Engineering

https://store.raywenderlich.com/products/advanced-apple-debugging-and-reverse-
engineering

Advanced
Apple Debugging

& Reverse Engineering

SECOND EDITION
Exploning Apple code through LLDS, Python, and DTraca

By Derek Selander

In Advanced Apple Debugging and Reverse Engineering, you'll come to realize
debugging is an enjoyable process to help you better understand software. Not only will
you learn to find bugs faster, but you’ll also learn how other developers have solved
problems similar to yours.

You'll also learn how to create custom, powerful debugging scripts that will help you
quickly find the secrets behind any bit of code that piques your interest.

After reading this book, you'll have the tools and knowledge to answer even the most
obscure question about your code — or someone else’s.

RxSwift: Reactive Programming with Swift

https://store.raywenderlich.com/products/rxswift

RxSwift

Reactive Programming
with Swift

SECOND EDITION

This book is for iOS developers who already feel comfortable with iOS and Swift, and
want to dive deep into development with RxSwift.

Start with an introduction to the reactive programming paradigm; learn about
observers and observables, filtering and transforming operators, and how to work with
the Ul, and finish off by building a fully-featured app in RxSwift.

Core Data by Tutorials

https://store.raywenderlich.com/products/core-data-by-tutorials

Core Data
by Tutorials

FOURTH EDITION
1I0S 11 and Swift 4 edition

This book is for intermediate iOS developers who already know the basics of iOS and
Swift 4 development but want to learn how to use Core Data to save data in their apps.

Start with with the basics like setting up your own Core Data Stack all the way to
advanced topics like migration, performance, multithreading, and more!

iIOS Animations by Tutorials

https://store.raywenderlich.com/products/ios-animations-by-tutorials

Animations
by Tutorials

FOURTH EDITION

108 11 and Swift 4 edition

This book is for iOS developers who already know the basics of iOS and Swift 4, and
want to dive deep into animations.

Start with basic view animations and move all the way to layer animations, animating
constraints, view controller transitions, and more!

ARKit by Tutorials

https://store.raywenderlich.com/products/arkit-by-tutorials

oy Tutorials

FIRST EDITION
Building Augmented Reality Apps in Swift 4

By the raywenderlich.com Tutorial Team
Chris Language, Namrata Bandekar, Antonio Bello & Tammy Coron

Learn how to use Apple’s augmented reality framework, ARKit, to build five great-
looking AR apps:

» Tabletop Poker Dice

e Immersive Sci-Fi Portal
» 3D Face Masking

e Location-Based Content

e Monster Truck Sim

watchOS by Tutorials

https://store.raywenderlich.com/products/watchos-by-tutorials

¢ A

l\

watchOS

by Tutorials

THIRD EDITION
A y Apple Watch apps with watchOS 4 & Swift 4

This book is for intermediate iOS developers who already know the basics of iOS and
Swift development but want to learn how to make Apple Watch apps for watchOS 4.

tvOS Apprentice

https://store.raywenderlich.com/products/tvos-apprentice

Apprentice

THIRD EDITION
Beginning tvOS development with Swift 4

This book is for complete beginners to tvOS development. No prior iOS or web
development knowledge is necessary, however the book does assume at least a
rudimentary knowledge of Swift.

This book teaches you how to make tvOS apps in two different ways: via the traditional
method using UIKit, and via the new Client-Server method using TVML.

Metal by Tutorials

https://store.raywenderlich.com/products/metal-by-tutorials

by Tutorials

FIRST EDITION
Beginning game engine development with Metal

By Caroline Begbie & Marius Horga

This book will introduce you to graphics programming in Metal — Apple’s framework
for programming on the GPU. You’ll build your own game engine in Metal where you
can create 3D scenes and build your own 3D games.

Want to make games?

Learn how to make great-looking games that are deeply engaging and fun to play!

2D Apple Games by Tutorials

https://store.raywenderlich.com/products/2d-apple-games-by-tutorials

In this book, you will make 6 complete and polished mini-games, from an action game
to a puzzle game to a classic platformer!

This book is for beginner to advanced iOS developers. Whether you are a complete
beginner to making iOS games, or an advanced iOS developer looking to learn about
SpriteKit, you will learn a lot from this book!

3D Apple Games by Tutorials

https://store.raywenderlich.com/products/3d-apple-games-by-tutorials

Through a series of mini-games and challenges, you will go from beginner to advanced
and learn everything you need to make your own 3D game!

This book is for beginner to advanced iOS developers. Whether you are a complete
beginner to making iOS games, or an advanced iOS developer looking to learn about
SceneKit, you will learn a lot from this book!

Unity Games by Tutorials

https://store.raywenderlich.com/products/unity-games-by-tutorials

Through a series of mini-games and challenges, you will go from beginner to advanced
and learn everything you need to make your own 3D game!

This book is for beginner to advanced iOS developers. Whether you are a complete
beginner to making iOS games, or an advanced iOS developer looking to learn about
SceneKit, you will learn a lot from this book!

Beat 'Em Up Game Starter Kit - Unity

https://store.raywenderlich.com/products/beat-em-up-game-starter-Kkit-unity

The classic beat ’em up starter kit is back — for Unity!

Create your own side-scrolling beat ’em up game in the style of such arcade classics as
Double Dragon, Teenage Mutant Ninja Turtles, Golden Axe and Streets of Rage.

This starter kit equips you with all tools, art and instructions you’ll need to create your
own addictive mobile game for Android and iOS.

Want to learn Android or Kotlin?

Get a head start on learning to develop great Android apps in Kotlin, the newest first-
class language for building Android apps.

Android Apprentice

https://store.raywenderlich.com/products/android-apprentice

Ahdroid

Apprentice

FIRST EDITION
Beginning Android development with Kotlin 1.2

By Darryl Bayliss & Tom Blankenship

If you’re completely new to Android or developing in Kotlin, this is the book for you!

The Android Apprentice takes you all the way from building your first app, to
submitting your app for sale. By the end of this book, you’ll be experienced enough to
turn your vague ideas into real apps that you can release on the Google Play Store.

You’ll build 4 complete apps from scratch — each app is a little more complicated than
the previous one. Together, these apps will teach you how to work with the most
common controls and APIs used by Android developers around the world.

Kotlin Apprentice

https://store.raywenderlich.com/products/kotlin-apprentice

Kotlin'

Apprentice

FIRST EDITION
Beginning programming with Kotlin

By the raywenderlich.com Tutorial Team

Iina Galata, Joe Howard, Richard Lucas & Ellen Shapiro

This is a book for complete beginners to the new, modern Kotlin language.

Everything in the book takes place in a clean, modern development environment, which
means you can focus on the core features of programming in the Kotlin language,
without getting bogged down in the many details of building apps.

This is a sister book to the Android Apprentice the Android Apprentice focuses on
making apps for Android, while the Kotlin Apprentice focuses on the Kotlin language
fundamentals.

